Page 1 of 1
Inserter production
Posted: Sun Sep 02, 2018 10:25 am
by Lubricus
What do you think about this inserter factory for an CPU optimized train factory?
It makes 2.1k inserters from iron and copper plates not counting the intermittent stops when a new train rolls into the station.
- Inserters.png (1.99 MiB) Viewed 4615 times
Code: Select all
0eNq1XMtu4zgQ/JVAZ2ugJimSynVP8w2LwcJxtImwtmxYSmaDIP++9COynJWsKjq+JTNxNdnd1WyxWn5PHpYv5WZb1W1y/55Ui3XdJPd/vidN9VTPl7t/a982ZXKfVG25SmZJPV/tfnso5+FPk49ZUtWP5b/JvXzMJj+0nVfL3kfUx69ZUtZt1Vblwej+l7e/6pfVQ7kNmGefTI/os2SzbsJngvlgKOCkSv/IZ8lb+EncjzwYeKy25eLwF2q3ri+4qsNtA3CdNu16MwSrjqD+HNLOkqadH35OftZNuW3LbXOX3v2x3mzK7d1mOW/DhgYMa2xDorj9mA622W3o6blN964e2JI/4tpp1BxHtTiqxVENjupwVIWjehw1w1ELGFWIaEmGwxLhEsFhiXiJwmGJgInGYYmICU4wJmI4wZiA4QRj4kUQjECFCcYEC+YXsVIFs4twqoK5RcRfwcwiUlXBvGJopWBaMTVAwbRiCpaCacVUVwXTijkKFEwr5tjS2dfmb6CoSte4qH3jsuv/mt3/NpuyfExX68eXZZnqnYUhEydCLNf1U/o8D43iY1odW6wBg0VnL7SAg5CKhXSTkHrSEeo6NxhyzWZyyTmJaCcRLZANJ1dKjBtO5Jg3Tbl6WFZh6av54rmqd58aOHy/2Av5XO0fQxb7xjxdzB+WZdJbx2YblhBy/jXY7S3HDC7HT+9YX7fhgtxwfsv9mmm+S3bVfo0wOeRjLCjAgrnKgmaqYhFjoX9Kzhf/XKpdvm9oCCsncjjKHUBZyK4y4PDiG+VtD3s7n3J2QRAoxhc5dSLbGAsSXYLdeUUql6G32K7rapEuqu3ipWpj61Ku8AyI2rOOrcK327JhCmUes+le0/zy8Hm7Nf6MbwdBLF6piv5qh7AcjvVl570+1gwhM+d4lC8LyJfZBU/aDN69mXCkFRjKUn60iihvMX60GvKj5JccSTEnplm3OVsipcsufV4wqlAs0qdyvk1/P5flMrZaWIKGp+NBf425HYKmW/JibK+nNY36e3h3J/r+Xq8fyzpdPJdNe6ksmBFmFBElRiPUcBlRYmKSzrHncnbblHMKdqWiEs6xh7H57nxzBsw3O5FuLucLMZZtlijEUdnmUB3udP2DyFbOgzrc8ahUoAz3MyT1BRHOEbzvKXFIKHxGQGd96CEwiWinsGV+pevf1TLgYrdi/zMwSw4fP0i4n3JwZ2FfYvbRSD5+DS1G0wVdjTgMf1IWzl84dfVUUC3f2WFrdGxM7e1C6tmaORbRAhTMDVV4iowVzDMAVFi9HAFVrFyOgGpWLUdADSuWI6A5q5UjoJZVyhFQx+rkCKhnVXIEtGA18gyZPshIiRwCFVIhh0AVKZBDoJrUxyFQw8njEGbOqeMQpuXEcQjTcdo4hOk5aRzCLEhlHAHFZ3lw2gs+yYMXKMHnePBSKvgUD170BZ/hUUSgALnjszWPefISobu69PM6+tAJXdXHicCXLXlvl4NIrLbZXZB814O8KOLhTPecOIhFPJups4BMtPGi8KuUTkkbXaWOvCa6zS2RqOnbWHMNW1TOssV/I1l6I0KXyeInuKLYW1bJvp0ruAwqk1mI37d019EYVzTOaJlitGavVLtnzhuRRQP6ir+GLcAcU3d45VEGDHt6mLHg4BcwHZYew2LkkbMQTw4fO7i8xfnTkwVm1J04I/2ENw1BQUV5E5gO6vI/yp294SCwJfmM3s2EfjGaT/R8LDSG73cg5VeQMaJP6tio0FhM+j1YGIZgD9Hi9sH1NO1GY1vw5zMWW2CoqCNyVGx7M0WArD8c3N4M0OVxFb0H8cMgxPnno3ZqcJoUUQameShXbcDCB1ocvsNzLc5B07M+kl+1gwI/pKIM2AxP0qghXLESewzeYupYLPH8a85yY6qyWQ1nc6QnTeSRcxtH4j1zwfnR4jkf6UiHF86oNyzEerzyRFoApctUuiwwUF/cGy66ODVxvBsV810vL4ujX8/p7iKhQRZx9Ms6mjSgSQOexGff3DldnoAGclAQt2RSWVYRx94adawmjsF6VhXHYAtWF8decs1YZRyDFVYbx2AVq45jsJrVxzFYwyrkGGzOauQYrCVFcgzVkSo5hupJmRxDLUidHHvjO+OEcgxUOKUcA1WcVI6Bak4rx0ANJ5ZjoDmplmOolpTLMVRH6uUYqicFcwy1IBVz7DsPMlIyx1BPvFq8bF9DezSCeWxg3Dmm3n1p0P5rhe57X100S15DF3tocL1Tyoea4EJj/h9PJrPe
Re: Inserter production
Posted: Thu Sep 13, 2018 10:53 am
by Lubricus
It's not to hard to knit together the green science in a CPU friendly way with the railway and trains.
Code: Select all
0eNq1nctuHEmSRX+lwLXYCH+713J6MWhgdr1sFBoUlVUihiI1JFXdjUL9+yQlZmYo5Z5xj0XmSk8ef4W/zK+Z/XH1/v7L5vPT3cPL1c9/XN3dPj48X/38jz+unu9+e7i5f/27l/983lz9fHX3svl09e7q4ebT65+ebu7ur/58d3X38GHz76uf3Z/vFn/k/eZmS5/9kP/zl3dXm4eXu5e7zbdCv/7hP/98+PLp/eZpS/2uuOs3/rurz4/P25/ZsrZFbTnXIfwlvbv6z/Z3Lqa/pG0JH+6eNrff/ot/rdoR2O/BL1vyw/Xzy+PnHtfvqPl7Zn539fxy8+33V/9z8/75qlNI0GrvYd2jho0Qm/bY2y9Pv28+XH8d4R/7JO6x4ahPOtC8hz6/dvRvH1+G2GmHjct1LTI2VICtOjYDbNOxEWDdpHM94TqdSwbNeZnryai5oHPJsLmoc9G4JZ2Lxk2fbB6Nmz7bHBo3fbo5NG76fHNk3Lw+3xwZN6/PN0fGzevzjQyb16cbGTWvzzY0aGCyEaw819CIyTMN1VWeZ6hj5VlGvoIgzzHyyQZ5hqEJFuQJhtaDIE8wtHwFeYKh1TbIEwxtDkGeYGgvC/oMQ0MmTzF0UgjyHEMHmyhPMnQOi067Qbx+390LROhB9U0s7is7fc8tPe5hkt0+bbY3ud83158eP2yuf7379z9/f7z78HolfLr5bXN9+3Hz/NLbLmZ3Tre9YPUKmU+5m9v/vb57eN48vWz/6TTOD3BpdZ3dcp3z6kL8ciEFdIxb7pgKcH4Z11Z3wbTYBWkCdZ4W65zc2jq7tFxnv7qQvFxI0DtmXudRx4A5OK/dCLd6DrrldSOtnoMuLhcC5qBbXpwSmIPz2o1wq+dgW+yBDKZgW6xxXj0Dy3KNV0/AulwGmH9luVfA9KvLtNWzb3n9yVmv8fJ6kcvqqbxc47p6v1ouo4HpvdgrhWx+y7S1M295ty6rJ55Qhj7xls8DBcw7gSZf8g6G8aNDuOthdYtl2t3yQl0+3JfCucf17V1GShVvOG1X2dLtzSY+taTdTSmk5c6sszn15f3udeqEjTbkXuWqEzGnKV6jxH1PxS4mwA737fuOSj2obmlMu9t6mLrVS5zka5eUxU/i0NKy/PpWC3958lV4J6v85UniNv7ypHDbxF+eJK7jL08S1/OXJ4kb+MuTxI385UniJv7yJHEzf3mSuIW/PEncyl+eJG7jL08K100TfnrSuA6/PWlcjx+fNG7Ar08aN4r74mCzCF2oZTfr7v5uArqPfcPj8sHOTYW+Oh1jXRdb8flWq27j3CwMFZB+HIaqe8JyzlHdj3dCj+pijzro0NTFigdC5waV7Q6TU6fTiNqX0eiXpjjog/7gZ8Pg+/7gF1FgFw+38FcDujJS1VDLqV/LBi8TA85MwCHLCV1TtHNupuHQBIV+OiEo/O+nzebhp7/f3m0ebjc/Xf/0t7e7e1dl6GY6D1FnqDYq4Bfj42b1uRE/GWvchN+MNW7Gj8Yat+BXY41b8bOxxm3ahxYq/dKCYT9z3Yu0C/J+VnYg4SbtgucnGqcc5XS1x0Eiq4EjF8lq4MRlsho4c3OFBi7cXqGBKzdYaODGLRYSOE7cZKGBHbdZaGDPjRYaOHCrhQaO3GyhgRO3W2jgzA0XGrhwy4UGrtx0oYEbNl1I3DRh04XGddh0oXE9Nl1o3ECVsxo2Uumshk1UO6thMzVjaNhCL90atmL5rMZtWD8rcfOEBbQa1+H7kMb1+D6kcQO+D2nciO9DGjfh+5DGzfg+pHEL1tFqXN0aycZNt0aicSsTNnRpXIetpxpXnm/sYlTk+cZuckU0T+4ttE4x9xeDud/1zf0zHcdpw1o6SIPcD06pXTuyRcrhFNO8quU42L3dkVw9drHt2N25c14qx73w6if9/PrPz58325p8evzw5X5zHV6/h67j3CQUEtcW4kyi6lcNbZ93mHX/enz8sHlQBORfq96lBaELprVdEJcLcasHM5n0zuN+zmo/z2nDfi5CF4S1XVCFQlYPZrMoUYfdPNOULHRzXe7lmZBk2AF5ZftnopJhGWsHsgWLSnTcx1H+lIU+TovtX/uJzXQloyJW97C8H+7doZzyAt4q1SQ65RkYKEwOh4zuQ7WfaUruHx9+u/548/BhW01xVwr9r8LPFCUidb5qDqmeUqsADbiqAlQ8WyZ3GPYux3Ka9H1UFrb22WroDPPIz4QkN8/Pm0/v7++2Xfrp5vbj3cPrj53+mr4Vuf30776GuXn+9lJ7/fl1yfNXs8p8ftrWYztBft8WPqvT4AtXtsG2tuGNNnz+wV+m4U44zzq/suEzoYvY8Hrxdgtbclrb7IDH++LNXj5Wu7WttixHUx9l0LK5aVkh42fiG1HzPZXli62fC29OqWX8ntr67W5oGZ6qZZz8hJY8YyGqS0M53SPeo2XKWNlA1gRjGVHrkLDQHwnMY2NNDVq3qfZRhau/piIFk5sJbjT111SB+uu/NvcvXeWXnwly1CPx0YB04/usOWi/DfOCmcyHNcdutQx8CJ/5JY97B5/CiwCN9vuC2hvJfntQi8i0iEnoGnHa4kk70+6oajaVbLj0Tl3LugdynTBDCdG2HJdEaWDPJVEaOHBJlAaOXBKlgROXRGngzCVRGrhwSZQGrlwSpYEbl0RJYKDXcWjwgGDHocEDih2HBk+X7FyjsdM1O9ds6BKWRGncjCVRGrdQSZSGrVQSpWEblURJWF20g74FXbODPl0g2UFjpkt22NqgS3bYYqZLdtjqq0t22HYBJDts3CqWRGnchiVREleX7LAjjy7ZYWc0INlB46ZLdtgpuEQsidK4PBCLxs1YEqVxC5ZEadwKJVFTWpZE+SLPtuRP39uqwaFp6lvL1YAse+/HEUcNybJ76ZtCnxOofXnAicy+HCz2w5rW2LJGj6Y1r7G7BcmYIglv2truqdQyPhjLtsacN+rmNq0x4GndrChvnF/ZzW2FHGDcO2sMkWLnRPQWYeubBN8i+l9gyyvMm8MuLisMmmIXV/KGYuvhhiVDk1/W9gQ9yMtht+xuTQGEdTnslr6P8mxXmQw9GqawQjzyVuSZH9XDFNl+YWt4WiEeuVTDM1vBbQ0vdvHIpdpd0eJsa3azi0cu1GxBK+RWtloNibPTxLXWx3i+Pg4qJGYSS7NHMK9sP8EZYiFOU7+Sid1TRr2Wea8NKlRw21rtkypx6mjZ9NE14tNhK0NR2xycJoxlOPuNq0nvzEHS4awcDh/sNxq1GZG4VhibkYhnhbGMDJwXjEUU8wVKHYwKvCOMjWjmK4rYiDDpLg62NgSnezgYS8C75mDRBoF19st/7pMiVo41KeVmmIlyJOFYy+eKGhZCtrj3/diu/odYuK9fG3gBhVAtDnJqTRv3lhvWNE4GFzOxojPBjupvNq6nN7hpqfUM2GdrXE9x4iU47WbCnNMpdB0F48PrYMmJhrNr/74UK4yH1oS0vgHIbnai+CYlk5twNDSN63AwNI3rcSw0jRuw7k/jRiz707gJq/40bsaiP41bsOZP41Ys+dO4DSv+JG6esOBP4zqs99O4Hsv9NG7Aaj+NG7HYT+MmrPXTuJlK/TRsoUo/DVup0E/DNqrzk7C65oaMGFDcEKqHIj+NGqDGT6NGKPHTqIkq/DRspgI/DVuovk/DVirv07CNqvskrC66QXtZdVTbp2E9lfZp2ECVfRo2UmGfhk1U16dhM5X1adhCVX0aFmef0LCNavokrJ5MCd3QmmOKviYkjw6NGxP7t+iGX+BalMwljT/Atb7hFCRL2kVKa0Ki7KAnS9rJR5qQ+i/ogWz2QzNoN0800foPho3m5atluaFxUrNOpIMpdFJi48UJvlPXbjbCOPFJMvVB3OJea58UaZVGIB4HouY+CZv2RiBu2quxT6q4SgMQd1it3ckYnZiEcrdUjDAOt2wA8rxl/Y/bBVylAYiv+KX/cc8UF1oAkSJkuoiOZ2EoQhTT6HgSBo3LczBoXJ6CQeJ6noFB4/IEDBqX51/QuDz9gsbl2Rc0Lk++oHF57gWNy1MvaFyeeUHj4sQLEjbgvAsaFqdd0LA464KGDShfZBHiR8eAz2iDbSwkercqkhwmBh48qPTPbCCB0O65swhBqKMag2SmAyv5uO3dXTyIOfPyyXZH6pRdhFijMeLT3ah6/HRX+ifgGGA08OKUhlLLdBFyYEY9rMiO6pW64vvNqCv5/ab0D++x4uyURUpOGXX5wn4L8wJWVy/ssYKpJCY+X/odmgzzpX+JSThOQZmUDowUm6vSgYkZSnJR6prxtjVJ21biEyj3d9YkuneW05RG35aOB6XbfzxLT87CWGfuS5b7u0v2zJaRUx9Dt5Ys5JmIQFgQ8+lmChJxv9cU5mgQ9cas+GjFlWUU+lZ5/D31P1P8BJqVM1DmJrfc32/LxL+EAckRF5TsLaNUFP9Mt7IMIYSqqyvLiMSxwliGMDPLyiKEibl2xAt97M/KKViNAOJ3e7qQCD6Wxh4hs5AHPuqyhDjogO79uxo2uv4IVc9XkAEpoL3EEto7Skl54soy+LNR7h+Ua+Z9OyCp8YvjvvGpSQfOWrF1Iyun+drg+0QS4pvHJj4xBXeyO5XAH4dPNVmiV8eZ/ECNExCOxm7vPn339Phw/dvm5un6Xx83m3ur/3QkKXoOG/GPX1LX6jRTM6j+4m3U4O2X+PD8+fHp5fr95v7lind+IuuEcYAzbW+7+PgWfXwLHd5Km5vWj+6gmY3K3I6XrN5enfSYJrs3Pw3rqMxNw3oqc9OwgcrcNGykMjcNm6jMTcNmKnPTsNy4k7pmmTRVfLIYkRr2b01SJPQ0k4NI/q3pVF6Er3kQXv1atyvlT5/vb142Xc/W5EjiyhMtil04cJ08hFJQ4SR9XvsO3sVFFt1t8Hk4kKCy0RYDL+S03GCw92Va04rilI36ssFsBuJE8xNNZqCC+S0zde2MyfNb5ojEnSNTVtrKnSM1LneO1LjcOVLjcudIjcudIzUud46UuIE7R2pc7hypcblzpMblzpEalztHalzuHKlxsXOkhsXOkRoWO0dqWOwcKWEjdY7UqNQ5UqNS50iNSp0jNSqVoGhU7BypYbFzpIbFzpEaFr8MaljsHClhE3aO1LDYOVLDYudIDYudIzUsdo7UsNg5UsNi50gNi50jNSx2jtSw2DlSwmbsHKlhoXNkErIdpMzVYKlrjE0gesb+ajcgiSYLv1ChRFQGyRJWO2Vs+3cHm4O/iPE/ZWAAmdUmDuwpmUReC8s4Hk3Yj3ps5etQKiBU26wWklNvKmrC4enkV6xoZcq6j7jwSOaX/oa/C+exZGFd/OaKbryclmF0yrv1n++gk/SJ7ujHW6lcJQn68lREy2dsR1/00jZmSLWT+pMBKGr229iAhFRuyRKlPFXyWBCPPsSFl96kiGzKyvqDZ4WJVj8zwXds/SoaHuumPsnwWDcgNRL8OlpkDalNRDphLENJvONWluFBUGdjEYLibVpZxPJc9CtL4HK32H/falzuNiIVsoTGYmp3BaucsQiu847dV688wdAKIwzf5EYkfn+MsU/i98cRCTuljkCGKeH7JMOUGJBwyJwRqFLXpSilE8mGQCKxu81lx70aRiTsPTcC8e891D6Jf+8jkmovCacxifbRCMRdrkN/dQHhQvZ9NCDhMDkjEP+6Q3918fzrHpHw1z0CGb7u/uriDV/3gES/7gGGf90DkOHr7q8l3vB1D0j86x6A+Nft+4tAgCeVEYafVEYkj10nvKQKyyFg6aSXhFd5Jo6QpJP+lHRynwrkp+uf/vr4+fPm6YSAMqsBOTxtUqZpF1QwPhiNPhQeS9D394rQYNoFL9g1cuT7xqB+0WGfHy+8VGUQkmP3AqZxA07goHEjTuCgcRPWKGrcjDWKGrdgjaLGrVijqHEb1ihKXJCAxJNxAwlIPBk3ENLDk3EDCUgcGTeQgMShcUtYo6hxM9YoatyCNYoat1KNooZtVKMoYUH6ETJoIAYIGTNdMEFGTBdPoLpGqFHUqAlqFDVqhhpFjVqoRlHDVqpR1LA4yI6E1YODoNVWTzqCNgc96wjay/S0I2jr1fOOoJOCnngEHWz0xCPoHKZH90DHRl2EgE65euIRdCjXJQjoDqHrEdCVRw/3gW5oNTCNohfEHbni95zBfdcQ0cP3DaUgoscuz4L3y3EtcuUmwVENK3k69ZaoPrnyZMZ7Yc+r020XOtMdqNCyDHXgkdfWGTOdgVjvtFxtnIA8LDMjlXZ5QdqVG7avDz7clmECDteU6nEVjx+MM1fxjEiNW6SdYpEuk6Dd8eUIyr73MtMQqELeelTiXgl5+9UcfX178/5+Y9WMlkkQ+hwEysZGY6lsvGybo57s3dhiGDbVtT4GRxb2g/oYJvLUJ1UYk9MVZeo1MvWcRapV3ERiNBrLcOT84JqpDJKCvH5XVhcXyAJg7BYU8tFYBgn5aOx5EHIjLnd80VchY5fgB+7BpDfIN1z3mbD4CU2QbGm2X7HHuvL9frO5365bT48Pd7fXt3dPt1/uXsy7jic+KcaW2zfaSzYc30RHHw+/ibrcJ2W03yTTYBTmkDeqarVENvpa5S6uAdxxDyxt42FCe4mpWwP0EBt0a/CG8EnDXg3AoyTQTgWnVWOXJqlL0+kOxWfVEYifVV1/4Qk8OqsTAiiXQKOzOiGCcono+uks5pYSnT2sqgsX8Vos0VvCqrqguDOVGOxhVX9o8KFezOewzKQy/3p8/LB5uL79uHl+Ob3kDlwpS0ymFTxIi03MaAW3fYTFHPr1Yt9gNYR+VT/BZg79er4vcCbOWfgCw+IHmJxls9O+v+TBZmf6+hLORjrYXWZ6HNEVRO0DwzF30NasamwP66pTdKNlJsI5rbGd9hXUNLYLIUpLAjPV+3Gr+j3fLCFKv8J7uDyZju5aXfPxLPz17n6LFneDH8t4d/UNsJ1K//hju9J82LxqEPZlfF1pv47L1Z+/dOvjDXucH/UcOE9X2nHREOp0PMbJco8Qa5rxEIdLjnDhe8hwgEU/ugjXJV0MtF/d+0tn4bERXN94poY02T0cjjAey6KdEFa7lIBl0Ro3Ylm0xk1YFq1xM5ZFa9yCZdEat2JZtMZtWBYtcUGwEUfGDYQecWTcQGofR8atBiyL1rgRy6I1bqKyaA2bqSxawxYqi9awlcqiNWyDsmiJ2iYoi9aoDsqiNaqHsmiNGqAsWqNGKovWsInKojVsprJoDYtzRWrYSmXRGrZRWbSCrSDXjSdYR2XRGtZTWbSGDVQWrWEjlUVr2ERl0Ro2U1m0hi1UFq1hK5VFa9hGZdESdibYkWTRbVkVXXlIk/51rBpCmtQ+SNHf7I1DlkhK1UVuKtrbKr4pT1ZZDupMm7NkG0rzlnZZPHjs3hyRz2ROryRdzqH4OmpStURUrYoNqTry3j8t1XQm36FPN/kiLzfVC4q7tGr2eM9nzzknz0zUszR5luaOp0kmp7PPHG+IKjv8GjMP5arNGq/P78XZ7Wnqx3jpKbMstq2rZkwQU2rFOhyV7uath7XZp4NednKoeu6f3ZGgv5GDXD/7zMd9UCQngmgaIcOGPNA+1QBUsQdaHtHIzuq+nylLB8pQwV5h69eG1+pRt0byeLjUq1F/svesT6PXFxNTl8bAXClCn4I1qP25GQ3BLfsgfow9OMVcSqpbY7HM5Tj66kxJEKRY6zU2EgTZEuG/JjEYWzs1zgkr7qbLD3PyhrVlNMop8BOdNsYJhG+2jTASvg76EuteBxyDi1YfVFnoxwGlkUOIxUmu5olM4clUhHA7rOsa4cGZwlZC0GeBrZOWp9nKFiT9jGArgPtJ9jl4DvaNg7kiyYfrQ8gMNHVbmcxnkAu45dbiLGk5JmkrKWCa2voyWPf5i3RlNGQIEXtSn8y2jqRzuT8FC57Kg+pUsEl5U4ObvL6b+Lrw5q1DBxgH5c5S3Pta8TtK/4uvajhhv1syo3S/rWIw4bc3zniuUMJ1prtRI7rsFrCg9XzGBQRWQMEFMH6F/InhxUAjGX1Pjc7G/ueuq3F206Zvz5jpb6Rgy2XZ4aW2QN3ustJxkYZHlqiJBkeWqJmGRpaohSqAJWql+l+J2qj6V6C2aaLaX4nqqPJXonqq+5Wogap+JWqkml+JmqjiV6JmqveVqIWqfSVqpVpfidqo0lehgrRB+mDpcptrfayA9EYfKpBYSB8pF5m+V2Impu6VmJlpeyVmYcpeiVmZrldiNqjqVaB6liIw7/WERWCJ0pMXgdVUz2MEFn49jAzYo/SQMmA71ZMdgZ1fz3sEDil6CiRwntLTIYGjX5igfleCOqjelaAeanclaIDKXQkaoW5Xgiak2i3Lup+GQ8t077qNB5apfU6lYYyP5c6li21Q3XRM7ambWqT2hn6bZwISKb6sC0rdsO2vL8ZuUCPiQp+iBnTY2ZGaolprkcb4HTUyQwNsU8xcLeJZ0feYbpFGGxxxcLDBfoCOllgyPZf6FNF9++18MKoLFRmOOFhk2I+y1RIVRI04CX6VLkufZcIJI/tBA9tMVyEF6zoOjJ270EpNca4KeyfIFfR2ypGwIFfQ24lMwzpqjdOwnprjNGyg9jgNG6lBTsMmapHTsJma5DRsoTY5DVupUU7DNmqVk7AgYogDQ6YnDLoGIwaiiYABA7FEwHiBSCJkuBKzzWlQMQ1D6m413eNjKehs691yAMtWcLLWfmDoBoKFvD31KQldWhUdSA4amqaE4mt6rJDarWz3FsMVDP0g/U1NA7QLrX+cBqhfOxq04LjN3Q9IDwqyo0alrvjM18+G0vQoIG8LvI9Ko8XUB+5teIrypTdkLTlmdhchXWLwdvM5bn13HWoO3o79D4KIbq82Pn36N5G57EC47o0oEVenf+9oieap8ZJvYpuLC4QLqW/96onRyetJiKZzLScZNESHFzZiN+EQHSKWhugQsTREh4ilITpELA3RIWJpiA4RS0N0iFgaokPE0hAdIpaG6NCwDkdJDN2D5Jbk2OEnhOWlckv1NO3YsH4BZA8KFuXztowIkqNYyxDS5OwDtFrLUIKIr+2rAlIKWcuoesYWaxGCk8fKnlJS7qz8qIQgHH5lCV72UbKWgC3rYUSKeNEZkbC3cYgDUsZ1GpGEibcPvB2ibSwOE++b1+vd7fWvX54ebm43p5ygjksbuMyMClX8rfK6hs1UDErD/FkaFgQnyLayXZ60K5+nWcKOHFY2K4JmTedp1fL+vLZR2MoS8oCE8y4PSThTT8jLtoUtF2bqCW3ZZuMmKVPPfu4W0yhFR85pxjI8OacZywhg8TEWEcEZylhEAmcoYxFZn/jGErDSI9QBCWdzHpKOnKxuP371sVvMUxKq4m3lppkGRMlTEuoJ/703n73Hp81P1z/9/dPm/uXu4berfrGOur7t04mEQfC2LdSbE8e/fTGL9+WEU6c7v1zviKGO1hs7S5blamP/yExrXawOjONKU59I3NOiV2SCEzVrYq16cjXJ4htFpMtI5l7KAzsSkKG8LZ1DUqQapDhJbU1UhCRyM1UhidxCZUgit1IdkshtVIikcYH+xJNxAwIUT8YNSFAcGTcgQnFk3IAMxaFxS1SOJHIz1SOJ3AIFSSK2QkWSiG1QkqRhQTYbMma6QIWMmK5QQXUNzGlQpEbmNihSExP+iNQMVTAilqpXRGyF7oMitkEHQg2ri1jQ5qDHzUB7mS5iQVuvHkkDnRR0jQs62OixNNA5TA+mgY6NejQNdMrVw2mgQ7mukglgyJyukgmVYB1UG4hYj8Ry0S3L2rZQ/O4X+/Y1N+F3vyEpAQNztEQF25aRzdakOMjquYUWs90rSvHCtkVUYBi39k0DhnFjGTPpDDW1qV3lnNnwNh5i53WDvrVrgtWaJ/cMeDKwNiJZzYcn+j7rzxDWalttknLXV/mdw9qEZrSBjjveU0l1FPTuWyyO4hbjoIIeiZ+HGG6dHJEi2cKSaaBn8hgiEzkuDT3QO5+BTMTasGKSiaxsWAULu7FdzSITWdesMOkyEWOzZgIbXSayslVeX0WNjWIxFWIZYLA/RcwDUsJr04iEFTCxDkhYATMkVaAvjtU2pA3oi41lKNqYw/HcWIYjx3NjGR7EfbaWEXR9sbUIctA1FgG0MdYisqwvtpZQZH2xtQTsc5umAanRRWdEUiOk+G9rfHIDjBgipZymeKAAGEKwNScNxitha86QRAMADUF430qD03nC+9aQRKP+DEE47E8abO8g3MmucSMSzRY8BGH9SBqcE7h+ZEiiEYCGIOylkAfrUcZeCkNSoSHjRiC8bOfB7J3rPoQr+ghT8Nc9JLHIVkMMDW01BOG1Ow/WkoLX7iGJrt1DEF6782AtKXjtHpLo2j0E4bU7D9aSyr/uEYmu3UMQXrvLYC2hAT6K4uPqKv7Yh/VL4A5aTG52rmZwB7WWofiG1pVlKM9QaWUZyjOUX1dGm3Srn7UI4bqeVxbhdSOftQjhsj6tLELPd2ktIcnXXGsJNFbvaDFq2FuljKqEvVWGpEYb1wf5CcdNKHFAcrhxI5L4hPQm3hlilEAJ+7locmH0UwRvMNYytNywO63vsDsyWF+NNVU8slcWoQX6mU53xfJ2FtdV09Fg16OqOvwwW/KAhCOQDEk4rVZRfGT9TAsh+cgWxUfWK3FGDstAsQ13Nr3/lrzi5c1LgUfyyoax+AfhPA1rYKWytcuj8AfpLM0SYpMcVkdjs0j0A3eeVgV9LTU2ipoHR+sWD2JS6oCEzYNDUrG5HRfNX9DPtBSK23E55Xb8t6fHB8Xp2H+Xd+U16e+vd/cvmydJffljw7ZD8e3ntx/NP/64unv4sHn9evdF3G2rdb2t1tWfv3Rr813ClqVszm1ejT7O4cYd1sXzN86DxvnlxgXcuHy5toHc0Wm5aYk27YKfZJZb5pYbVlh6WHXpCNQoO1rjAjbK1v5V3EeWSGOIwVfVIclT1+eqOBj4GKjrs8iN1PVZ5Cbq+ixyM3V9FrmFuj6L3Epdn0Vuo67PGjdN1PVZ5Drq+ixyPXV9FrmBuj6L3Ehdn0Vugq7PIjZD12cRW6Drs4it0PVZxDbm+qxRdS0IqauuCyEdq4tEyFegC0bIJ5tpWgERm6Drs4jN0PVZxBbo+ixiK3R9FrE00LqGLTTQuoilgdZFLA20LmJpoHURSwOti1gaaF3E0kDrIpYGWhexNNC6iKWB1jXsTBejuD5XxfXZY4nM6D7GJTJ1YHWsWN44JEXwAFFNnoa+JrvFrX57X19l0KjZYGN7K3hJV+RrMb2u1LDGri3JavLKUWum15V1DWuT3X55jk+lOYPFUv1UGvAJNw5aC9wqKVc/ms2vZxmaZHkVW/k5Zv1VzDpixWr5PUunVsOb3Mo+bdi8LH6hYZrk5z7baIVJDZ1Zh1UPfbCHrvNVcZ0PetiW3dll1HDsoFrjgIQdVIekTM4uyTbgRMdgLQO4lFuLaGAhsxXhwOQzluCQr3UtAwz1xBh9fw57YtQ8IGFx+pCUkDxxiMlI1jfEFCCIG0LoU98QxJ/6+o+GwWP/iyHJAWeCavKpDUJWoIMzgbWMAJwJrGVE4ExgLSMBZwJrGUDsai2i6M4E1iKq7kxgLaLpzgTGIoS4JytHW8grtPKbDXhDGyxGAW9obRqQIvPhaooPVwjE86o5W2cSzytrGcTzyloG8byylkE8r4xlROB5ZS0CeF5ZiwCeV9YigOeVtQjd88pagu55ZS2Bel6NljieJ6iNqkQPuEMQPuC2wdVGDnlST2McuKE3kzdLSB7c0K1lBHQdGnZHBGuZsaZJv+hbi8jgUjfsiiJbC6zVxLNqVFU+qwYXUBJyxe9Iy75JITvmm9QU36SQPZm8JveJMJPdkNeztsYrJGTiF2ltWDK9nq1sGLhYWttVLK8wK5tVwZpmbFYzvIOsa1XR7aXGRs3EQe/vfrveN+zz432vVeGtrAGMXjJHiyCPX9MG19W57kcQ3A8xyebl1DRXhTAT/CheTu0cXk6hFLvmop3bpSR8pyJSFRht5FQSSrOrBM7fuDoZNAPjxlVnfma/QNs81xOcaFqwvnVfoGURP0OfaFhiXk7q0lHxZXWwxlV8WXXT4N5bK1p1x5xGvZNeUUKn6TmRdu5JKthR/yQV7KmDkgoO1ENJBUfqoqSCE/VRUsGZOimp4EK9lFRwpW5KKrhRPyUNHEG8HucR2FFPJRXsoauSyg3QV0nlRuispHIT9FZSuZm5K6nYwvyVVGxlDksqtjGPJRGrh/FBn64e1IdNNV12w9YGXYXDFjNdk+PYsCXot6RyM3RcUrkFei6p3Apdl1Rug75LIlfX/KAzWtSzG6FDZfQeui+p3AD9l1RuhA5MKjdBDyaVm6ELk8otyIfJTYoTU/T0NWR0b4u+8atk30AZlaRD+xeGLcViBY2GkDh7S9i2c1dr7COKgtOOSl7SxMRge0Fx0xoRfwzkCcU8crY3lLVNy3bj4nm+l2KwJ+rfCxCbmweucauh3IA4me2jZxme6CwvYCs/SkU/5FeOWjRbZ8/Tr9HwBLe2WxM2AuvfaZbf98wjVqA3Uqfy/eOCLknam3kVf6QYGz6GDNo+UyidbHs6Pj8sDlxy/IATB5X06IBjcouJKaC92FhIJNuGsYxEFjljGWRWGosoyE3JTWXA4Uf20WdoOLL3X+9jZsLAMcchRd2Y44EYbUwJuKtHpMi7ug5QRO2+pZg+1kzk7uZCiN7dXAgRvJsLIYp3ayFlImutsQygeTeXAUTv5jKA6t1chi57Nxeh697NRWSkBtutc21AK3jFHCxzBaeOc25gmir4dDki1YlXatDvOHzQmOR5pQYngpkS5+Tp+XDecuH49Jz75IibO6pj4s0d7Mo1M83KkFPIHLp2CzR8wBuSmigAT99Ens475SbUDLNgMMubgyMw4nh2uD5uaOpT8flvWL9IxKSHy6kr2uW08UnhB2tcYxvCtO/QPg1vCMN68Q3BD1ZMnIlqREo8FZXzcYAC9oVpj1r+itPkVafb8oYtgh9ImgJ7kDqm+j41UgvTcSeEPjfhIR+NU+ZDngcoPjlGJMPkqANUo95IryhhaB1wc5oQGAgwKwKDSPkZgQMWuYrgiEWuIjhhkasIzljkKoILFrmK4IpFriK4YZGrBgZxaTwaPO+wyFUEeyxyFcEBi1xFcMQiVxGcsMhVBGcqchW5hYpcRW6lIleR26jIVeOGCYpcRayDIlcR66HIVcQGKHIVsRGKXEVsoiJXkZupyFXkFipyFbmVilxFbqMiV40bJypyFbmOilxFrqciV5EbqMhV5EYqchW5iYpcRW6mIleRW6jIVeRWKnIVuY2KXDWunoKJ3eQSNoqPbrGJG8XDNECpRvGwt4r7JlnFU4qiWgWDdQVTGbNjn63Hza+YPRNJPG1uXu5+37w+YW2uf7379z9vvrw8/np3f3/9tPm/L5vnVxHa7cftryfaFKav5b79wD81Jdq7q9vHLw8v226f+qK0NNNgrKlmvXQ1dcFloyOVdfd2N2G4O0v/tgv370xlsqaah/65VD318P8u4rGK5+mEeOlOAKLOjDsBJEdNGH6eRfFQ8KV6+Dyr4qH3L1VPkGoA744zlc6qTrj0Flb0lCbe407QfVsOKjIZHs7Sw4eCL9XD51kYD71/qXrqC6PHu0PRF8aD4lmGn2dhPBR8qR4+z8LoL71FFn1h9PhoX8+zMPpLH5qrvjAGfLAFgZM8PpLXMy2Mlz421/MsjOHSx+aqL4wB72Iz7dmqTrj0LlZ1t8OAT7b1PAtjMJ1snx/v7z5c//plc690Q5Oi9e3MXeHYp7sXra8boi+1iUjFoqOmoYZtbCPDmCq628sLg/RRtMC0fMfUvgqqsaiQLgzkP03LpLN7FwlpgNGkpzvz9BBTsGgsVKm7KhSNRaeIxlpjorFjatdsnHUV3n50qyAay0CSt5NCRS9V2GMplAgOWAolgiOWQonghKVQIjhjKZQILlgKJYIrlkKJ4IalUBoYSPo8Gjwg6fNo8ICkz6PBA5I+hwYPSPocG7yEpVAiOGMplAguWAolgiuVQoncRqVQGpckmkNcR6VQItdDKZSIDVAKJWIjlEKJ2ASlUCI2QymUiC1UCiVyK5VCidxGpVAaV1fxsdVXl/Gx7ULX8bH9TRfysQ1ZV/KxE4Qu5WNHHl3Kx85oupSPHSp1KR87BetSPnZs16V87J6hS/nYxUiX8rGbXAxQGhQ1T9wcI5cG/ciOfXbi0iCZnc+ruYlRNxXePn7+vEVKFtMcz6xhulxFK5cHyaPVDPIgFZ6mM+tuLtbF6cxCpstV1BskQvJ4hTNLhC7XDdGg45G7waJAkuH5zOKby/XxueVMl6tpNQiF5AFrZxYKXawbgNTzIKpRuyFbdEgy3J9ZgnO5Pj63qOlyNY0GRY88YBYtkgzPZ5bhXK6Pzy1sulxNq0EyJA9YO7Nk6GLdUCaDrkfthmJRJMlwf2YxzuX6+NzypsvVNBqEQ/KApTMLhy7XDdkgHZK7oZxZOkS6gUiH8kz9qUiHYjwhHfrr1/4fiofyTMGJxEM949Ev34IJvsaBuv+y+fx09/Daf79vO+Xbf6jF++raVPyff/4/NapZaQ==
Re: Inserter production
Posted: Thu Sep 13, 2018 11:30 am
by Nexarius
Looks cool but
- Inserters.png (2.09 MiB) Viewed 4333 times
Re: Inserter production
Posted: Thu Sep 13, 2018 1:43 pm
by Aeternus
Fair design. It could use a (limited) buffer for copper to deal with those trains not being there, and for optimization also a buffer between the 2 green inserters feeding iron to the ElCirc factories. Stuff on the ground is bad since those inserters will never reach a resting/idle state. Also add a second green inserter between the copper wire and elcirc factory. Your bottleneck in this design will be there from the look of things.
Re: Inserter production
Posted: Thu Sep 13, 2018 2:46 pm
by Lubricus
Aeternus wrote: ↑Thu Sep 13, 2018 1:43 pm
Fair design. It could use a (limited) buffer for copper to deal with those trains not being there, and for optimization also a buffer between the 2 green inserters feeding iron to the ElCirc factories. Stuff on the ground is bad since those inserters will never reach a resting/idle state. Also add a second green inserter between the copper wire and elcirc factory. Your bottleneck in this design will be there from the look of things.
If I add buffers we add more active entities as inserters and chests to the design. I think that would be worse for CPU than the intermittent stops they prevent (the entities will be inactive when stopped and I think inserters is at least as bad as assemblers for CPU). I have planned to have an extra train stopped just behind to roll in quick.
The bottleneck is not the stackinserter between the wire assembler and the circuit assembler, it is actually the two long-handed inserters from the train to the wire assembler (it's minimal). It's hard to build this sort of designs without the longhanded inserters because the distance between trains can only be even number of tiles and assemblers and normal inserters is all odd number of tiles
Re: Inserter production
Posted: Thu Sep 13, 2018 2:48 pm
by Lubricus
Aeternus wrote: ↑Thu Sep 13, 2018 1:43 pm
Stuff on the ground is bad since those inserters will never reach a resting/idle state.
I don't have any items on the ground and the inserters from the trains deactivate properly when there is no train (have checked with F4 show-active-state).
Re: Inserter production
Posted: Thu Sep 13, 2018 2:50 pm
by Lubricus
Nexarius wrote: ↑Thu Sep 13, 2018 11:30 am
Looks cool but
Yea.... It's because if i build a real megabase with this design i will have more wagons on the trains. So tilability