Theikkru wrote: Thu Jul 04, 2024 11:40 pm
I think there is a key detail you are missing that relates to this rule in the FFF:
Machines can push fluid into a segment at an unlimited rate, and can pull from a segment at a rate proportional to how full the segment is. In other words, if a segment is half full, then the pulling rate is half of the maximum.
I have this in memory; but i don't understand how it should be interpreted in the case of "no machine" only tank and pipes and/or pumps. The "maximum" mentionned though i think understanding that's where you consider flow can only exist and as such would be the place where "tweaking numbers" is done. ( otherwise it's not "flow" for you as i understand the next quote).
Theikkru wrote: Thu Jul 04, 2024 11:40 pm
No. You need to discard the idea that there is fluid in those individual entities, and understand that fluid only exists in the pipe segment as a whole. By connecting the two tank sets with pipes, you are merging two pipe segments into one,
irreversibly, causing all properties across that segment to instantly become one and the same, based on merging calculations; that's not really "flow" or "transfer". (This distinction is important later.)
If you then remove one of those pipes, you are then simply dividing the one segment into two, with equal fill percentages.
Well to me that is flow and transfer, i imagine the situation where on the left you have 4 filled tanks, and on the right 4 empty tanks , then i manually put a pipe to connect them, and have the game pause, and only go 1 tick at a time and considering the amount of "green bar" as shown in the FFF in every tanks.
Initial situation is indeed 2 segment , one empty , one full, then they are connected, but the level of water will not stay as 1 group full and 1 group empty, the "empty group" will have like shown in the FFF a "green bar" that will increase over time at a certain rate. no ?
I feel like it won't be instantaneous.( like in the FFF video when the pump is turned on, the green bar "increases" during a short duration in all the pipes )
Another way to think of it as flow (for me) would be to consider that you put the pipe in the middle and remove it after 1 or 5 or 10 or 20 ticks and compare the fluid quantity in the 2 different group of tanks. Then divide the quantity in the previously empty group of tanks by the amount of time during which a pipe was connecting the 2 groups. ( that's why i strike "irreversibly

)
The part i underlined to me seem to suggest that you say the quantity after 1 or 5 or 10 or 20 ticks will be the same : 50% of what was initially in the group of tank that was filled. I think it is not correct because of the video shown in the FFF, but maybe you think it will be different if instead of turning a pump "on" it is a pipe that is placed ; since one is creating 2 segment and not the other ? That would be to me the thing counter intuitive, if you put a pump you create 2 segment and thus lower the rate of transfer compared to a single segment made of pipes.
What you describe to me would STILL be a "flow" , a flow of 50% of fluid contained in one segment, (tank 1 2 3 4 ) toward what was previously another segment ( tank 6 7 8 9 ) in a single tick. ( if adding pipe cause fluid level in the new segment made from the 2 old to be levelled immediatly upon unification and stay as is after the unificating pipe is removed the next tick).
Theikkru wrote: Thu Jul 04, 2024 11:40 pm
Here is the problem: for fluid to be useful, it must ultimately leave a pipe segment and enter some other entity to be used (e.g. turbines, chemical plants). Therefore, there will always be a "machine" (governed by the FFF rule that I quoted above) at the end of a pipe system. It is useless to discuss "flow" or "fluid transfer" within pipe segments, because the limiting factor will always be downstream of that pipe segment.
That's another thing x) I have seen fluid going IN AND OUT of entities in the past, i think it can still happen in vanilla with the boilers when you put them inline that the quantity of water in a single one goes up and down a little before settling. Not sure how it will be in the future.
I understand when you say the limiting factor will always be downsteam of that pipe segment but depending on previous situation, i'm not sure it will be the case all the time. Considering the picture of the FFF, if the pump in the snake of pipe is only turned on 1 tick every other tick, the "throughput" will be 6000 fluid per second. If you have 60 heat exchanger, they would require more than 6000/S.
As i see it the "pump" itself could become the limiting factor in the design i posted. Thus i would need, while building, to keep track of how many "connexions" exist between the segment that contain all the offshore pumps ( pushing water at infinite rate). And the segment that contain all the heat exchanger. ( pulling at a limited rate based on fluid % OR/AND pulling at a certain rate due to the machine receipe/normal consumption).
It could happen that my offshore pumps segment and the heat exchanger segment need "more flow" between them no ? so that the segment of fluid containing the heat exchanger receive more water via the pump from the other segment with the offshore pumps than the consumption of the heat exchanger when their segment is full and their work at full capacity would be.
If ( 1 pump => 12K fluid/s but 150 heat exchanger => around 15K/s consumption) = I need more pumps between the 2 segments ?
I dont this it's useless to discuss flow, but there are many things like that, where (many) other people think it's useless to discuss but not me; It's quite subjective
Theikkru wrote: Thu Jul 04, 2024 11:40 pm
In the case of 0 pumps in your power plant example, flow would remain at max rate so long as the pipes remain 100% full, but as soon as they fall below that fill level, the machines trying to extract from them (whether that be turbines or heat exchangers) would start to lose performance. In other words, there must always be a volume of fluid equal to the capacity of the pipe segment trapped in that pipe segment in order for full flow to occur. This is why REDUCING the capacity of a given pipe segment is good.
I understand the first part, but i don't necessarily draw the same conclusion or at least i add nuances/reserve for special cases.
It seem to me that If you want the better flow, you also need the larger segment, because the quantity of fluid in absolute value that can be pulled from any segment while keeping the machine connected to it running at 100% is larger for larger segment, you can use more machines at the same time, which means somehow you have more 'useful' flow.
Yes you need the segment filled with fluid for better flow ( not 10% filled), AND you need that segment to be the highest capacity possible for better flow. ( i think) Hence why i said my power plant could work better with 0 pumps between offshore pumps and heat exchanger. That segment capacity would be hugeee, so all the heat exchanger "consuming their tick consumption" would still not be significant regarding the fullness or not of the segment which would make it "immune" to flow reduction.
It's going into niche case that cannot really be demonstrated in game but to explain when it's not "immune" i could think of a segment that is composed of :
-a single pipe
-6 offshore pumps connected to it ( impossible in game)
- a pump exctracting fluid from that single pipe to put into a tank.
Offshore pump produce 20 fluid per tick, so if there was 6 connected to a single pipe, they wouldn't be able to produce 120 fluid per tick, since pipe can only hold 100.
Similar situation but maybe more plausible in game may occur if you use not offshore pumps (because you need 6 to exceed a pipe's capacity) but regular pumps and a "too small segment" for the expected quantity of "fluid turnover" occuring every tick.
Given that real pumps can push 6000 or 12000 fluid per second, that is 100 or 200 per tick, if "a segment of fluid" is composed of 10 pipes, and 10 pumps are attempting to push fluid, and 10 other attempting to pull. Wouldn't it mean that doublling the amount of "pipes" in the network would allow more transfer ?
In some more general perspective that would be asking :
Why would transfering to "tank" be so much better if now pipes are not having a "100" individual capacity anymore ? As that was what limited their transfer rate for me.
( asking to anyone including myself this is not a trap x) )
Theikkru wrote: Thu Jul 04, 2024 11:40 pm
If, however, you put a tank-pump arrangement as close as you can to the downstream "machines", you divide what was one pipe segment into two, with different properties: the first segment, with most of the capacity, that can be drawn down to a much lower fill level (50% in my calculus example) without compromising flow, while the second segment, with much smaller capacity, still must remain full. This effectively turns the first segment into a fluid buffer, and reduces the total volume of fluid required to run the pipe system effectively, especially over long distances (due to the increased capacity).
That's not what i had in mind when designing the power plant. I think that make sense considering what you said earlier, as a logical consequence, but i am not so sure i agree / understand the previous step.
Anyway it's interesting to read, it make me think about different strat to test, and consider i could have misunderstood things
