Just for a note, I've read everything, that is available on wiki in terms of descriptions and guides, also watched guides on youtube, but I feel like I'm stuck with my learning project and I ask for help.
Recently I wanted to dig a little deeper in circuit network magic of a little more complex things, so I decided to create something slightly more complex than I usually did, specifically the accumulator display.
This post is not about me asking for a blueprint, I'm instead interested to understand how it works through building, so later I can built something else myself.
Here's list of requirements, I've put in front of myself (green - i did it, yellow - I did it, but it doesn't work perfectly, red - I'm stuck):
- Battery shaped lamp display with segments, representing charge, lightning up accordingly to charge percentage.
- Lighted up segments are painted to a specific color, based on charge (<=20% - red, <=40% - yellow, >40% - green), so at a single time whole battery is just displayed with one color.
- When exactly at 0% first segment will flash red.
- Battery border will blink, when charging or consuming charge.
- If its charging it blinks green, if it consumes the charge it will blink red.
- There's an indicator, that shows the lowest value overnight, that resets next time accums charge starts to go below 100.
Number 1 (final design)
0eNrdnW9uHMmRxe/Cz5RQ+b9ysDAwPoAvsDAG0ohjE5YogSJnPTB0gL3H7sX2JMuWujWaenxkvHF32xFfbIgjNclXLzIjI6Pi94+L12/vrz7cXt/cXXz3j4vrH9/ffLz47j//cfHx+i83r97uvnb3y4eri+8uru+u3l1cXty8erf708d3r96+ffH21bsPF58uL65v3lz9/eK79OnPlxdXN3fXd9dXXz7l8x9++eHm/t3rq9uHv/DYv7+8+PD+48M/eX+z+24PH/MiX178svu/8vDRDz/Q3e37tz+8vvrrq5+v39/u/s6P17c/3l/f/fDw3958/Yc/Xd9+vPsBfuyfr2/v7h++8ut3/vw3Xlz9fHX7y91fr2/+cvHlu3y8e7XToCy7P7378Or21d3uu138x+6/33+8evhub9/fPvxad7f3V1/+yc3Vj7vv/nH37dLuf/5ye3V18+0vfv3m4RM//fnTp0+XIEa2iVH2YuQQYmSmRtGsEUON9I0Qn9XJRJ1qUmcJFTedaNFsTkmhxBhEjC4ZI0bU1G3UMKcMzSkx1GlbdZh1VpM6sfbitBAxpkmMWGtKSkSMtEjWiBE36yZuClUnSV6Joc7cqsMCKdnS2hIrklhWm4qkRpCsNm/N0pg8try2hpKnVKaGNbM9pHNLjHRuMj1sye2LGUqORvcdYzq7xpKDHYmTLX990WPJQXcaWwb7YsSSg62l2ZbCvqix5GAbbTZWXlssOVhhIGet2piCFKI3lQEaPEUrTceQZ5u1ZhpMVXNPjGDKW30aKyzlptlniXKzsdFnZfpoRdsUpJq/iS6qjli1TUHq+xt52KEor5J5gsTW1j2NyjM19wTRZ2ufzspzZZGKlylKoXtTkKK30EmqfKcolyIbediZu2RJnhjBVbbu6axCU4oUXEHk2bqnU/do1d4gwbW9rS7sUFqadFeQotycbORhp4rSJfcsUe4KNsFFd64huSeIPNtmh85KGsWWNscqFndWwSi2LDlWNbCzhbfacuJY9yqdrbPVlgLHukforBpRbRlvsCvZwY6P1ZbhxrqRHSzfr7aENsVK+AdLQaq1f2F/PkxrDD3oSmrsXzj4I4gedVuMWulqMkSBZgyBaCKyag1AUQyzbS5s25LCSlfgKSoWxEHbZtW0PQjRLqK2SE1VUSzG8ruWNDlmzIhLcMHCingtS11oQQRr2xpw2m5ytBOpFalPLYhgaUV9Lm3NOa1KnWxRHFYwAjeWY3eerUm9bkEEywsaytiA0brUDRfFYZAjQEMYTRqG1PEUxWHVbKhV6niKYijYA5u1ha5NpYslip9W7NIwXp32RWpriWKwae2K6lLfRhB5Skb7GK/DelY6FYLo1RN2kRn7gnpRLp+j+KujnS5tV2q9KrfRUfxVsFHI2NzQm3I9HcVfK9rp0nYt17tygR3FXw2bQTb+ovvjUK64o1S5FrTTpe1mr6/KJXgUf0EX8dZwleo1pWvyKDd/W4MNlr+PRdMniKG2+VXN1gAcSWk0CKIX+AkisrIEdWSpFSFIAILBxnZHXNkJaBRNsCAO2wZgpfoYe1uC9XJsd7yVzhZrmj5B/EPtYkvIUwlll5WdT8YQW6FGjIx7Gz6DCrSKAvUovWKb9YWd2MYUe6NiCLRuU6DJUup1EQWKEWIDcupubZZak9gsNWJaijYDrd8k0fevH36gz7/bI70tLw+Fpf6yPfpBxfRB89nP0RqMo1g8W5OwVUzCgqyR24hPiTq6awIFifiGp8BLWx67Di2P7VHy2I2jMuvZXldNoCCO2uZtgy5JU0xsW4w1e+ugSSctL6JANYaDoOWWdlvNJGa2MRSa0PBIB5TNLCoUI8jm9j55sNPjFJuOT+mgP/1Wlt2z+40sf/inZalgHLY6z6rp0s6oSz+6LuyyYDatw9q1OxIFIMyu9U37loFObJ9D64b2vVZApkvn/M9V08X3WkGDRBuodlJ3fH/6IOkUibFIHcvtjDIc3Qxp4WSQJMng2w3LAosFJRks0mg07/6gU8iXIsng3B9wYqENeGmpUse1c2G2BbhUKS9maZIwzgOHsj8WabyZd38M8AfFPCxDEsa5P3j+sUod9c79AcWyygNnSsI498dKoWSL9AaBb3/AQN9EZ6okI66th/AH5RsmI5etxfBHAX/wwCmSMM79QbdZI4ptDeGPxsOkSS9+OHcDXzS7JIPz1QJOKxw6ZoSwBbu8TAkHTtGEzAhmC3YBnmAi0EprRUZWWyqxTAQTWxKdAZSM/LZUgploe/BZB1UoiX0UMVC7E0yU6WJtxbx9lSgKfxeOR43bqIitFFE0gqaBzpHWVdQoCNUakGaT3gtZmW/9DC7aXJbumqiP3VIAHbidL0JdU6acUZn1+Mpsc2nahJKsoLcRQZgJZwwKwEtGxNtXYZzHEtwFdG6ZqXXs+FYGyEqJzttJReMde19ltmny5MJo5GPnqwzEEkW5JSPL7aswzmMJUmIKQElGjNtyBmG+P70wsDHRmRypVK0XzLkykOQNHkxNskw5ozDHX30L3K7wfrHSNcs4V2Z7qJy0H8jIa8sxQgnu8wctjhpJbTHWGBhRlgbPZKbkGOeRBJkM7zmsEtPYuzBwE8N7yowotxojlKAZkw4fSUaqWw3hmAqpL+8yM/LdSgzHQAmYkqpS1QbaOncMJng8lLTJtc4dA0eCle9KXRLGuWPgFMk70YzUtxbDMbBdr3y7XiVhnDsGEjzem2akvK0hHAPwu8R7AJpELvbuGDhEJhpKTYIYe3cMZL50LmEy4ttGCMcgtY13PBoxbdFaRQDLlujgltTEkbBBuiAAk7Vr9WMSNa1tLYqLIC+mYxtTEyfFRnERZsi0NtzU6bEpSL8RbGSNb2TqANkliI8gb+YdNk2dIRtEI+CqJd4f0NUxskFireE8MuojI13tawvbcr5WgXH8t2I6glfpKmTkqH1VJp2xiWI5vjKQT1PAYzIS0742sflWBtCOiaL3Uhf5xs6jCbJnfifeRZCxc2W2SXNeaNLcxVFlztcZbJblnhGnl/lWBpCfqfO9SZxf5jyaBkQTz2c0+vByviLYCYQZCYSh5YshYoadK5NBGRpMQ5t7ls5YNz3B+gtnAwrGTSNrlvGtzMCJcDTPG9ooNOexBOj3RHtChzYKzbkwkOXxe04jUyzHCCU4GBS+L3XJMc6FgSuZwrclbTia81BaIZT44rtKwjh3DI7T44uvNi7Nt2MA/ZT5BbCRJ1ZiOAYH7NEMz4gNazEcU8ExtPSwZqnDz7kw2+06U0RQWoskjO9QWqEkU2lR3MhzazGEwSGNNMFbtbFrzkMJ8hh+9WYEuK0xhIEaHiUAJSOobY0RStBfU/mutEqh5FwYHN1HM18jmS1awwgMzMqUjpSMbLZofUfIZmt0QTbC2VIJ5iKolfP5NUY6WyqxXDRx6hpNBK18tkOkzSBNR9AmMekGb0W1HSRag7gIz1l0q7dy3A69a1EkgpI6n3JjZbwdJAoSaDhurHEXDamHbT1fm0A//ishwH/L/ALPCoDrp7fOtn/i+EOwcXRUp5m0lQk3IgjToSK4sMJXNkLiDsI4D6UJodSoMEnqX3MtTAYsWKYXeNmIjTsI4zqUHlwAawx3TJG615yvMbAr0aEu2QiSOwjjPJQgG6aEvbxIM9jW89W9TqELVErp/V1etBFszoWBSKo8koZimHnG0voJll44EHQeSKtkGOfC4JRHnt5JE9h8BxIg1jK9vctJGsDmXBdI7ihaLBvRczlEHOGIR7ojGVl0IdaXhBMe6YZkRNHVEHEEx2oKZctGNl0N4Rdoix183W1Ky5pzv0DRl0LaspFeV0L4Bed308QuSZPXnPsFqlP0Ni4biXU9gi4AYcsUwpaNnLoWIo6g/r2y+nfOEmvZuS44wJCuu1mauuY8jqAyRW/YspFDt4bQBfI6ylXLRvbciBBHyOSjfNCcJRazc11weCHdj4yQuVgdIRlgc7nzFbhLCs0gCkEOvPK1eEjNaVE8BGVxOp8mG/FzqcTyEM5V4/nf1FrTRpCmItjaC93arTy6g0Q9iIvg1MlvuK1kukNrWhCJYIRNpiNsspVRd5BoBJEIcsXJXVSkJrV+xnaAo7/ukYGvlSmsLlthdf301tkKU48vDE5Zo1VjI6vu0KTmW5gFyl2FHi+srLoRIpRgYAulG2Yjq+7QpOZcGEiVB198V0kY52sMTljji++UmtScrzGwK1WaFxtZdQdhnIcSZMOUbpirNGCtn7FGenxdgK+VV24Ybb6ac2EgkvglTJUozeOMuhx/hak4w5HuSVWDNDsXBkc48hVGmq7mPJBgr6bYsVyl4WrOdYHkjt/CVInQ7DyO4DSw0Ap6lQDNznXB6Y18p55Kl5rvOAJIXaaQumyE1NUQfoGMN9EuWCOjroTwC+zT/IbOiKgrEfwChLpdPx/TpSjdWM79AvsRBYplI5auh9AF9qPJ15em+MV5HMGJOvH9SAIzO9cFx1nSyzYjdW6EiCPYpykhLBtJc2sEXYCclvk9kpEuN0LEEU4mpIWpLkGZneuCoyzpPm2kyAXrCAGaXOHjQ4w0uVhtRRmocplS5bKRKpdKLA9V8BCPsiopFMVDODWN7ltWytwhzFqQpiLY2jtNeay4uYNENYiLGsQZPV1ZuXOH1rQoEq0gEXfRqkkUJNCQRFd4rvhNDn3/+uFn+vzroUTry/0xvbxsj36QldzWT+/GTV9BO/47I4C0KxTclofGLm5nFKYfXxjsdqMLmBXcNiIIU6BuxqdTDI1c7DyU8HhCC/NGbtuh2825MJALUG5bHhq32Pkag2+B0FTbyG07dLv5FqbC4ssndwyNWuw8lDqEEl98V6Wrq56veHYCXYBOVvilxZhSV5dzYSC/47cWRmzbcvoV5vvTL7043JCeLNYkGca5MHCdU+lmbaS25RCBBIVDfm1hhLbFWGAguePXFkZmW44QRysON6SleCOyLcT6gvDDSqteRmJbDRFHA+KIthmvEqrYuV+g3EB5bdnIaysh/DLBLzyOJFCxc79AYkcxdtnIaGsR/ALUsUJhSNkIZushdNnuR4VP4jDS2FqEOELWIQX55SlBip3rAi0Wje7TRu7aCBFHUJni9yVG2NoaQhfI6wr3S1f84jyOcGg1rdhNCVDsXBdo12+0YPctVe2JK+/53I331HC+MfovCswzKXSeSVk0mm+Q9gvEklGQXVk0mG8UD0FWTflkZdFYvi2IQpAv9UIVElG+JUiXE6ROFFlWFhHlm4O4CE9pk0okonyjSAQuohc3ZRFRviWIRJBb9UEl0lC++XxtBfXo754UQL2VylcgDeVbzijMenxhoAGVIs3KoqF8XQuz6/nb9hVQYZKG8nUeSlCXp/d+JWkoX9/CAO2tUNpbSRrK1/cag3hAijUrSUP5Ol9joHSWuDAaytd5KMHiS+9ES5JQvvl8tbNT6AKGoXcWJWkoX+fCQH7XeCRJKN9yRl1OsPTi5F6+J2koX+fC4EsefIWRUL6+AwnQQ4XeWpQsoXyd6wLJHb21KFlC+TqPI6igU+RbyRLK17cuiE5c6U6dJZSv8ziCLmOKfCtZQvk69wuOeaZ3dVlC+Tr3CxR9O19fJJSvc79AYrfy/UhC+Tr3C1SnKFSpZAnl61sXmOhROl9fJJSv8ziC+vek+1GRUL7OdYEuY4q4K0VC+TqPI6hMdXpuLBLK17kukNfxe6QioXx9xxHg2XZ9gUwXCeXrXBd4e4xi60rRUL5B2h1gDEmh0K1SNJRvkG4HxJJNvhZrKN8oHoKyOL95KxrKN4qH4EZl4XmOiPJNQZqKYGunyLJSNZTvEsREcOikGMBSNZJvEIWAvVTovJtSRZBvkDCrOKiOm0gC+S7n6wUoR39fpADnrax8+dE4vumMTRLL8YWBo+jCY0rj+PoWJkGti05gKFXi+DqPJJhkQomJpUoYX+e6QJZMAXilahRf5ysM9qdxw2gUX+crDOxJje5JTaL4Oo8kSIQpMrE0BeK7nK/YdQJZgDhUKNGsNInh61wXCCN++dIkhG86Y3H0+MtLw5mGPIw0hK9zYeAYmWhm1xSEr/M4gn2akt5KUwi+zmWBvI7fvTQJ4Os8inBcNd+OJICvc13gxiXz7UgB+PoOI+C8Fcq/K13i9zq3Cw6oo6tuV/i9zu0Ce/SknWldwvf6tgugywpFl5Wu4Hud22W7GVV+AdcVeq9zWTrIQm//uwTvdR5FcJSm8LbSJXivc11wejdfdRV4r/MwmhBGfNFV2L2+ZQH2U114Siehe51HEc4ypJvRkNC9znWBk3Shu9GQ0L1B+hsAjVUpZa4MjdwbpL0BOXyFrsRDIvdGsdB2B6984MzQwL1RLIQz0mjuNzRwb5QeIijVDLqvD43bG6QjFlB9lV9pDw3bG7YPjY+MGBq1N4qHBniIFv6sLLZ+coE2t//5+O90AKOu8tu5VWIQn7FbpOTjn7ZwYhr1ixXFNgLoUuG+hc+OWCUCsfM4ShBHNM8xktj2/WjOdYEMmd/PrRJ/2HccrTgtjfulKd1ovnVpkA3zmRqrRB92HkeQA1PSY1mVYWlnfIX5FLJArZhf0K3SrDTfugAoqWYeRlOwyxlroqdYdXEWI42iuSh2ca4LjmKkWd1UJqU5j6ICUUSbrqYyKM25LJDTUTpdMVLYcoAgmjiGke5FRghbhLUFGY+NbkVGBluNEETQLMKv56aCHHbuFuhzbXzJHUInmnO3rOAW2hY9FeCwc7dAPsdZYFOZkObaLRXwVpVeutVFGZDmXBa48KdctGokx7UIQYTjFwuVJQtucS1LRRJjr1QWZTqa8yCCQlRNVBZlOJpzWSCdo6CzamTBjQhBhKMX+U7UBbc4lwUnavOdaCitZzGu6yuw32rle9KqCJSCCASZ7+DL8FQ6z4I4CAbKVDpQphpZcKmEchAOQKMhZmXC7WMsyJzBAXt6onu6FQ63V6gGCTI4aNJb7GqlxO37zqJ4CDYyiourVlzcXqEoHoJLFsqNq0Zu3L4DrZ7xxv/o729UoF3VxlefruhyRgBjrsfXBSrEg/tlKB1ornXZ9eFtVxp6prBi40aEOILO38bznKl0oPnWBWhXld7LVSM1bq+L8/UF56FRvxipcfsONOfrC+xHme5HRmrcXhfncQQ5MKUv1qwMRKtnLIieQBaoE9OruZqleWjOdYEw6jyMFEzyGdkiJ1h1M45b5FEkUZKd64KTtGlWl5V5aM6jCPp+KTKuZmUcmm9ZgBhXO8/pFEKy8yDCWYt0LyoKINm5LDhrkW5FRl5cjRBEcJDml3NGXFwN4BagohVK/6pGWlyJ4BZohqYQvWqExZUIboF8btJ8riiz0Jy7BYpR/NKtKKPQnMsCtySUeVaLQkZ2HkRQ6qawvFoUMLJzWXDOIl9ylUlovoMIhoBUyuuqVRmE5lwWSOfobJRaFSqy8yDCKYt0J6oKFNm3LBWnLNKdyEh0C9UUg41ntXKBqiJQkH4GQLxVyr6rRsRbKqEEgu2bjpCpRtRbKpFCrOJ4bZr2WZlv+xhrQXqGYE+vfE9fJYV6EA/BMs1vsa0YuH3fWRQPQeGG8uCqlQe3VyiKhyBFpLN4qpEMt+9A6+e78U/Hf3sDiFaV38lZ0XD95KG11aUfXxecgUYrxEY03L4DzbcuCapbjabMVjTciBBHmCnTPMdIhtt3oDnXBRJkfi9nRMPtdXG+vuAcYO6XoXSg+dYlw37U+H60Kro4jyPIgSlisTZlCFo/X4nrBLIA1Kryq7kuDUFzrguEEYWg1a6AkNsZZTnBqosjFmkUdQmE7FuXjiMWaVbXlSlozqNou0k3yoarXZmC5lyWDrLQnK4rFGTnQYQTFvlepFCQncuCU7P5VjSEFjTnQbRCEPEldxVkce4WyHMLX3Kn0ILm2y0AzGsUmFeNYLgSwS2QzxWazw1lCppztxRwCy0uDGUKmnNZtjtRo4SzOhQCsu8gGjhhkZa6h0JAdi4LTljkS64yBc15EA0IIr7kKlPQnMsC6RyfjTIU/rHzIIIyd+E7kcI/di4LTljkO9FUGs+CXNcDyq1RlFs1otxidQ0B0+2J1kUj0y2VUA7K4CBadjDC3VKJ5CCkvFWa9lkpb/sYG0F6hqDXYeUxViWF1iAegoMmv8W2kt/2fWdRFIJaOZ80Y2XA7RUKEmVIg+O9i0Ya3L4DbT3fjf/xX94AjFXjV3JWGlw/uW82shx/NvmKE9BofdgIg9v3n7mWpcEly6RBZIXBjQBBNO1BZGTB7bvPXMsCGKtGSZPVyILby+I6iCZOP+OyFKX3zPfaAmnw5EFUFVl8B1ERgqgpvUTr+WpbJ5AF8xZauTGy4JYAqgxBFQV5PM6nygkWXBwLTY+PUyIe+5YFx03yZE6ZfOY5hBqA4Bptr2qLMvjMtyqYyq1UFYV27DuCcKRioaoosGPPqrQFJypWqkoRWs58RxB0hVAwdjNC4GoAr0Aza+erbRMaznx7Baq5lBbejAi4EsArmK/wCFImnvn2CtSeaCdrW5SBZ65VAZRZo6jwtiiUY98RhKMUqVeSAjn2rQpOUqReMVLd1gARBPkK7XluRpLbCKBKEVRRCMeuIwhnC41GVVEAx75VweGSnarSlOayGE0LLWGaywXqikAjiECQ8VJuWzNy21IJ5SC4BSi0LGUEuKUSykE404xnfFPqLZtB+oKwLkPP2lam24GbvQQxER4x6TJkxbvtm8uiSATzZFqlZwgr6W0v0QyiEGRDK80Rv2W+3b9++Jk+/3qo0Pqy7V30sj3+QVXpWJvn6xM4/szuCVX3dTzSOfDbr/TdDdbh19t9IcNfoPupkbS278HwrG3L9ZHWlMtnunr67h7st9oyJZX+hHm+I9Fyhpt4uIRugFjqu6uzJ02a+I6t8N18SzufFfKJWwQJ+OZZp5Yfa5G5hBtMptMUbuZc67SUR9xjvmkoynAI336aj/SLXMLNFdNJmRYRTCe4jXjijqYo4yNc6wTMOLyfeKLmXJSas2+d8MVL/ArmZM2Yk33LnXviCDKfO4EUqbAb5TgMuKlGX7ZqRarsBjkNA6asJb5HSJXdMBaCVa/xYJVKu1EshBNSaOtU0Uq7u3UzRM0JMlY6/6JVsbabg7gI0rJGk4sq1naDSAQ0vKck0mq7UQKtYtM8PRpW65CHJZaL4J6JvvXXatUkiuIiHlbGWvMMZZlG93Mr4y1WCE0eMMYUOdjGBHv35I5ZpXNolAiCBJDyCZoR6RZt56aOadK8szB6YLGNrjpNGngWJqayPaaaNPEsiocA6rY7qzOFinZgKFEPDECRbpT41pqYH9cgviqPHCG2X4HK6+7VbVPJ28qLO6gaxIow0+iJc4gVHTdj+Q6PrlB7bHwPGJJmUVwFcVh5HmGcObHGchXeEcF5hg6kaEb43EGzKK6iUdalaWthPATZOpD6Gh/J0CUAcxTNAMLWgOLX+MCGLsGZo8Rdp9XsLkGZw+hB1+UuTWYLE1O46kBmzgdbdAnUHEYzyCoR+Nf5fidBnMPEHc0huwRvDqMH36eMOXWJFVO46kBOzUc+GEF3L3IszSCHRAoeHwhhpOAdNIsSd/T9PyP+7hB3JYyHmB4S3jlMTOGqA7VLPiLCCMWLVdwFDlxDjiCfH2EE5sWq3A56sh/SIOQwevBdSuFAh4koXHKgbM3naQzlzcEwksEJDIGDKz37G8l6sVKhQY/1VqJeLDnoFrUqrwSGCShYcYCH1la6jRmJerHqQshkRMYeBaQ1I2MvVlmIz/QxEvVincb4DmXE58UqTj+y4kCZaOXLdhPevA0jGRy9cJjKSs/8RsBerFLsE0vyUBwURQ5a3TBS9GJd1D+y4mDzOl+2pzAzNIxkcPKCEUNt0hO/kb4X61qaL8lTmdscRg5a3DDS9mK1MT6y4kCFiCLnmpHEF6zlGBGOOLBr0tzRiOmL1fn5xJrcJAtF0QOCrHLDdOkdrBpVIeT48XdspvbuYxRXYX81LcRO7d3HsArhe0mVu+rXlPvN1Y/Xb65uXzz8fK+vbz7/fPylkP6yEfn2H/OrfB+PqF9H/S4v3t/ffbj/Jz78wy8PP+z9zd0PP92+f/fD9c3Dh+2fg/Yg5nMzVvtzf2HgKzyXF9n+LZP53ar+DdPQ9OD7WZ77MyNe/++///d3PO8P1zd/e+JJ//Tq7UftUX+Zlvvkk8lc+KQJX/8VwqflGIH2p2PG1yNzdrfhM595KvARycxc7t9wHS2P7TzL5Gb63u413E28/M/veGy/XL19+/6/jhwx5Wnl+46F+Nu/8FyEdfiI8pxBqu0Vyf4NrtK2K/4rnnauR3nat1dvjvyo8zOP+vMY56fjNFsfVJUeVPq3iMo//I6n9EWnEz+noz2VJj2V8a94KsfZ4b4/7g7XnhuA/vwzas/scHSmbP+GMGpb9PbRNM/w3D5e7T7D/o/++OW5/PsFXfodOT17XkN7XvMsj+uPv+dxfX+Ux3X0neyYD+vX2sRhDTKdt9gQ05+u395d7eoFDz+Qmo/f749W1zdvrv5+WPeFVWp5LonmZ58pqlBPrEL6/Sok45P/BrBq+53TCX7n74/z5MtzT75TFZKmwjixCP/Eg2/WB5/VB//l0JjzqX7p8s0vfSl8xh8fdU9WhRvPHQH7Y8r++eEb3l29e/hpXr+9v/pwe/3wU1xe/PwgxGfpRllSHSONVD59+n/gZf/D
Number 2 (test stand)
0eNrdnGtu4zYQx+/Cz3YgviTZ2BboOYqF4QezS0APQ4+0RuAD9B7txXqSUrKzdkYaW+MqapkvCRxblPib139Ixq9sk9RmX9isYstXZrd5VrLlr6+stN+yddL8rTrsDVsyW5mUzVi2TptXO7O1O1PMt3m6sdm6ygt2nDGb7czvbMmPs7sDlOk6SebJOt1fXSiOX2fMZJWtrDk9RvvisMrqdGMKN3Lf9TO2z0t3SZ41d3PDzPWMHdwvHrih3YyqIk9WG/N9/WLdc7rPbG2xrW21cu/tflz4bIuyWnUe+8UWVe3+crlz+4n5L+w0eFmtG3aLoHmV7tdFC2PJfm7er0vjbpLkhZtNVdTmdElmts1Ny+YuvPnxrTAmu56v3bUwjseGJGAgSAwW0yGIR0fAr6bfvuYIEzmMifoMfhEiDNQwBvIzMNAIA01i4HVsKBgbEmESkmLDayYSMsFyaDSMifgMseKevh9CPAwC/wwQFgiDBYmB18ERw+DAkigPSNHhNZQIQlEYFJr0jKaDEn2A8gRQMMnBBam2eA0lhFBiDIokiRCvoWgIJcKgKFJO8RpKUynfxxNWgbkmlR+vqSygq2AlmYekTBtOByUc31VghyuwDpdHpKziNxWo4wValWNSAfKbCizLAuv4OE3V+k0FliCB1WVBk7V+U4GrAwIrzIKma9V0VPT4VKCGE+gaK22RVU5HRY2v9mENkigV2jKr374C22WBNUGCtvDqNxXYLwtsEUHQlmL9jiCYbSWmVwRtMdZvKlDFSUyvCNpyrNcRJGBzKLHmUNDWZ/3OK7A7FFh3KGja1u8IgjVIYjVI0rSt31RgDZJYDZJX2rbeuAdqp9Slsnh6OzDwpHvHoalBPh1dOT5d2GVKrJ+SxE13r6nAzkFhWVsSt+G9pgJ7b4llbalpG64+U5Gwwiusn5IhbQfWa1+BFV6hZ3miQVk7upe0Y0rSnnBzW4zvcTBnK0xpywUlO/kNBTZlCj04FVAKmd9QYE+mMO2kOCU3+Q0FFneNFXclKGXMbyiwtiustitJSbRiOih8fCiwIVPYQo9SFCgT9mOQyd9//EWgUphd5xxi3Bza7j+i2Mk2kJ92vvM2yb6TJyEaiZqSs712OhV0KSJQQkp19zsSO3IS2+BSpI1zzyMRRJfAQzO8G5pY16JIe+5eA4160j0GVHUdcqjUWlBUhd+5TAz1Mh1Q9KffUOAGrMZaY00S5T6Hnu44SoiGng4GOxVJv3vNj/fURyx1RV3/G6j9tbz1H4GY3NVPGkF7HuSCtvyQHYgZy+tqXxPGPIFrx90f3OPVWbV6LvJ0ZTM3Dls+r5PSHElHZ/V76cv7pO+MCTxtwIoDR0SjQNGMJv8Do4luRPz5gNmayPhYo9220WCTaJpJ1P8hjh4zycEkSf7buFaRt0OpcXiS1dTtrrTbtSJWvfRjqdnZOp2bxE2osNv5Pk9M167nSPsXaV4vBj5aRHK44LzY3pxA39ni9GTtvyJP5X3Q+X56wPWCR72uh/x1eu4zTNx1uV47xCQ7iOntENw5q/plZEO0OocQAdGdWI27AUEx2+3wQs16aenWha2+p6ZyQX/Lsopk2cugIxi3NM0Yq/e7f/neFKedtyWbP2BiF74UK9KshO3khJem8W02Q/RojFTRZ5tUpkC+D+NO3qrPSevHV2J8fdynOd763Kl85/Vpd3n77RvLq2/7mLEXN7eWRSQDrqKIR1wej/8AS39s3w==
One more thing to note, I think I have an idea how to do it in terms of programming, the issue I'm having is I'm not 100% sure how to create specific things using circuit network itself.
Here's a list of my questions, that possibly someone can help me understand better:
- How to store a value, that will stay same, disregarding of the continious input value? Like, to let CN know that accums are losing charge, I can compare A and B, where A is current charge level and B is a charge level lets say a second ago. If A<B - it is loosing charge. I tried SR latches and memory cells from tutorials on wiki, but my B is always equal to A as it changes overnight.
- How to force pulse machine to stop outputting the value if the initial condition is not met on first decider combinator? Please see the blueprint Number 2 for it - on the right a have a solution that forces lowest row of lamps to blink, if A(ccumulator charge)=0. It does so, but if A will raise above 0, when the pulse had negative value - it will continue to output that negative value, which will cause the lamps to be disabled due to enabled condition for A be greater or equal than 0 to light.
0eNrtXdtuI0eS/Rc+7lLeirxnY2YBz8UzmD9oDIyGLrSbWN1AUd5tGPr3JdktS51RwYyTIkWWVC8Du91TlYw4GdcTUb9Pzi7vZ7eL+fVy8uH3yfz85vpu8uHfv0/u5r9en16u/2z55XY2+TCZL2dXk+nk+vRq/W8Xs/P5xWxxcn5zdTa/Pl3eLCYP08n8+mL2f5MP9PDzdDK7Xs6X89nXp23+5cun6/urs9li9Rf+eM7d/dnd8nQ5v7lePfv25m6++cfVW1ePOYk/+Onky+ofyPzgHx6m7Dnm6TlXp5eXJ5enV7c9zwmPT+l7hlU9w297hFP9nFD7NV73a8h+e0y3kvhKX9ez8/V/vlv/d1r/z6+L2ez6udjnF6ufaR5+fuh7a1C+1TS9NQhvjcq3UtNbvfDWpHxr1/TWKLw1696am16ahJeuf4PmranlrY6kt5LurbHprRKECbQD2FtFCessx4lveqsEJnK6t7qWt3pRr0rb1GSaXJbeqrVNTb/VSW9V2qYmg+glg0g629T2U0Uw6UxTk1aDdFuNzjI1iTd00ksJcvPYSyWdGp1darqqQYKv0ZmlJlsYpJtqdFapyewHyQAbnVFq8qtRRK/OJjW51SiZX6MzSW1xSxTlqzRJTTYpSjGa0dmktig4SgC2OqPUFgUnySpZwkL+BEb80++PIZkMa7BjZMj5FKewEsitxXKCBKYEhTAkn2gdlhB9O8ZycXP56Wz2+fS3+SoXXv2d8/ni/H6+/LT6bxd//B9/mS/ulp9Ybv3bfLG8X/3J05s3f+PkX5OvD1/llOv8vFv/y9Xt6WKTb3+Y/Pf6P9/fzVbvuLxZrCSwXNzPwPSskIp0K63HlANBJJYQsdIpwGQVOkUpCytel4ilkdApUnEKJ9qOBKWVeY8w/XHPMM2lZkQrjqXaCcy0vz9FlkIE12H42KcF+cu+LUh5d7OEV0dQQWLIeF1HB99fYsmgOQPVSyBLQlSeQjJozkKqSWCpqACI5GKcg2Sxz1vz1z0DxJWhWZZSSOeh0lYCK1vFKaRMwAWo1DVkg+aYQZOcjYuQULC7a8u7KwIkQQDBTlHC1Il3N0P1wUEb9zKT8FIc4DuoVJvASu208DlSXuUJOsagdeNK3UjRiDcQYBNYzy51I0LEQrXmIfs8H5hUJJvmHVT3x2xaeQwv2TTvoVMksPlQCkM8RoAggtVmSjdDUlXER6Q9gWmkDEO8FIZ4qEeSwBZJIQkSTQfUNElgz6Q8hRSzB6iLAinElOlLkFxLIOQQQ66UhY5pRhSKQfCBXZXSs3gpOA0QrSWB7a5SFJIhDw5pgGEgLa9KkAxo8Mghhpy7BOZVRHseAoKPIceEpoyUg1SMCRHpnCawcVpqRry5CWmlYnemxEeUfFzIiCiGDI9QOn4jwSN2iGKGHKqHMiIjIwElEtIOx9Ba+pkoxULRIEQA7BBlth9FeFjkEEN2M5FFqfKdcQg8EkiWKE8h4sNDRIZBe7vy6kYpAogB4pQkkFJS6kbK6WKEdJNAjkl5DFEaCZLGkCESS7sqCwWj4mCGtYyIkpRPJYyaA53Clmldkip1iSBZJJCVVOBU5B4kAwljyFFIYim3OMOQLEZgCtA5WFYlzxc47BwRwmrp8JLkdZPHaDJxyBSmUjtJ8jQpYBQmDCSsfihOZiRw9gUDSVnRTVJtJiUMJJg4mOcVOTspY2wZ6ByZ2RBxdCWDrJ045CY3c3uSdjJBjKqwR6H8bd8sM5bWiLSdbCCpYDe4DAayiFgLEWawi8OKvOJEUnYQe2jQEGFmTWREZA9JBYKIK418lsLFHCCIxCFzqspAIIu3FyPuYPeGhfIiBSFjzB0MIQyonXiMDEljyG4vRy2raiUuSDkYRlh1RJ6A7DDyDgQSz4KjzornwPgy2DmY4+3E2czOQvIYsrNZM7pKWyLrx0H6GbZcGF7kWd4OI/FguOVGVp7Gx1g8Q3bEnFTUifPHHTZrHTCcsBhWHA9eaQ7CCXgQBhQvG/yMcJywc7C5BAryIocOOQd2b5j/60RxEMQwGnIhKzBrT6K1J4hiBIKElTtFZg0pV2A03V42vkJBlodD5BGxcxgt54qUWzL8G/DBxG2rLBaIawRpJzBfQzJYI8IDG3KeE5i/ITEwUe4dcU1XmBXFgxgJEMQ4ii+i+JAR3Z6BSD5DDtMiCwaMvF+JEOUM27CxAk6UwWIQsGB3h5GwSWQekYGoR0O2bJHZeyOWcAzEPYIsSmQxkhHdjnJLTWoCCTtHlM8REJCA5+BzJLJaMMIPphdu6cWoxGCMn/giig1ZMfPU7ruhN2BcDdOPuJCHtBt5urcgF5YRi2woUu4MamrbE9sZRCJ/gCxGRRpyrJSYWKysHwsRxUD9MIMvkoBIucioiYuUWHJu5XOAe209dBDmeawM2IAdxGGqYUmXuGKK1BuEzHcnGWRdixihgZJs9BPGjcKwwjkNolfWbhJ61JAfsIYS8z5W3j7bYQoC7xA7ibhOiLT7hB4DhH1q6O/71hC7QvIuZO1KoUe5uAHLhdh2IRJZH6TdcpQbTEtm5xCXLZF2z1FuuUGMGkRZPghGUcIEwgIVmWuh3S6UmgTC3HKWjVuE2FL7tCg/7ZsKw3Ai7znXrhiK+zcoP+3doLAMVdz/RNqlR6Hh/qz5WmXPWF7O3kEUriF7QkbhInH9EmkXH4Umu1K6ZNPJ+jGQfgbtkRmpzMikMo+RucALxCycuOmHPMaeAg/CXKH8EQDtziHXAllGzDGdLJEASQQ8iGMHkSWCMYQG7XzYkhkjLiEijxGWQAVx4yZ6QZ+hg4B3hyWE4nIoUm5EOjHDj97WjLpSLmJUq1zS1KYflpiKn/0g5V6kJsAy8pSRyVMBIi0NubBDbI0oid8qoQBxqED1eKYe0fMo1zU1ueKeBUkyXAMCk0FXaBmLypAME4hFNeRUg9hiQhL3JZFya5Nvuj3MG5P8xayMnAO8PUlPtlMuS3JvIOPhG6TEbUkUISIVph626Iyi/IkziLk06KCaUYaMkcViEbEMOoJk+xNJ/OQVKbc4NdVR2BonI1OpIkSlAm8PqxOL38WiCFGpBu0D2RI2EhdKkXKVU34DNp/vUDKyWBKCWvD2sMBaJrxFjGgGXh/e5BfNScKYXZhEGDPFyMwU7U6nrkUibLUUiZ+BI+1Wp6bcmG2XMjJ5KWHkJVAiLBsVPzdGyk1K9BbKfoyXYmT+hXK1UxuFiZGpjEymUm5TordQbWObt0j8lCKptzt905DFTsLcsbjuitQLnr6dxGBY4Y1S2aqAZCpQJsBJMkhfwk7C1iqR+I040i5WepQJqJ3Uw7nTn81gUsLOxrkyfEuX+JEw0i49enTaoAYNcBKMx2P3aAH/sXdaBCucil8sI+3mo0cNgegxPYwvfrbCj60pLI+C3vyBePgAKRU8u+8hZ5V/Itpz7dqi9BbwFgC5JEguoMpCD32s7I2Kcb12t1JsslVJfRCjXWcUm2SU1coyHcbJwSTCPopmxA9vGe1Co9AgEdPxgzjxIBYiB4ESMcBBHHQQUCK2RzXln7CbteblaMy26TDezKBtI1s7ZMT9OqbDaDzDlgvz+p1shiKEFxDrvufS6Y+WIJWBR4s9zKuyuUji0TCqD2iqmDsTe/OGMKoPeJCol4hyPdGJaVJW6qGD6WVkIGVhRyNSE8SMcklQE2jYB/OM+ME8o1wS1CYPzqAQLzhBBBf7MoKLEb8AZggiuIDnCIA8IiIPUC++5xxlx0S+QgmREHiyPk1pWTiGIJrHoN164AoTzbGBWCcYpNm+nC3AUe7LaYqk2YIaw1r5RlyKYpQra5riHg5gQz3UmOJP1vRUVYxvIHIGdnS2SGWbCB1yDoudw6pZGUa5WCa8ARsQEfUERCwgTPrIKlOmQulkED8CtE787okOV7n5JjdJiH9Okd14tsTCrEmlOhuQES4FKMLUc3ThHMrlNKlJhFmvSu0yGHoDRoAtYTHi96CMxQgVmIIs1RFtZZVZiHQybJX13X1JLg6SC3inUg8rSI8mjHQBoikA2AnQQbDYo2eBjRcPEiH2B2aIE3KbEnQQUDWmh5gzZVKTjvbMV92fre7Y5jw9PZcfvuYB9IPvfY6DPkVh+p+BJCTCI4zq54Tar3kyf4+W52Rldc7m1xurI9JT1hC6mC++Km6Tc/dZxV/ml8vZ2lStNIl+cPN+bQNXcppfX8zWkFmfHl18WTzDQM/4a+8zLPSMv/c+w0PP+Kn3GQF6xj96n7GuRUHfK/ffx4Vi4v9spwqEKrc/VO1Cm5ImQCkGrRSf/NzF7Hx+MVtUhEjfLrvucn575lPIcrclZpkvZ1dP8vjfm5uL2fXJ+efZ3XJ70PLn1f/p5n55ew/EQbPfZosvy8/z61+/Pvv2y6eN0D/9sri5+jS/Xj3sW/AjyH0xu9BIfSopyG40avQqNK0EF/Ns2Q6mY3c4HdPR6pjZp/LLylYPAlcFga+AoHybDIKIgSAfHgM8OTkWDCS9ilNNgV6rwNSmwMJQh1dUoD/aSxxrl9irNbzZ0bTtEnMOYP39To2KjKEiHN59Hy0q1jubdqV09jDTTHR6tupLF+imPsMd3mD29LfeZ7h3nD1xCH+POmu06dWzTWoI6uyIuoHl26nmirIWMabNFR0wwgxHG6DkWoAS9b6qq2YZuRakapt1z9b7qTDg+jEQxkyTBwgMA4n0GAjVeMVVMJC0pI1nmxUhDBwwUTnaipLXFxM2qy63qphTkr2t1ZiyVukeDBfsewkXxhJ/3bBJoApNoNpj5nM8Ff4eyyAIMWJCpLH39m4vpjrUTy2Yehedt/VKWp0MscqdGftuYpTUI3MxSoq1KKl8mGlmLz/bToxoeOy6XSgsU5md6Fsym3XS23OhWj6ctK3XZ4uYNRBwY89GvuSmBoGshkAIL4YAn8DgB5RAYZpAMXZie0ChL4Fws13Bj3ypsSJXHFtusv7cDu9sqJWw1DMHwTVpeKxk92jYVsx21nddQ7XEFWoFrWy0EAALWmFsur7XtDlUCvXWagteIbSAbuy5Dg0wVLGJQVvcCxirL4+tFtlR6TPI2L3YD/HppKDOKVOTzscWa4/Oazy8rOcBhlwFRawFJ1rW37NPfujqr/R+GiM997hfiLFrEuLYsnyPIV7UgorappL8cffbdoGIY0kcdoOIqA3Rnn13B0JEGBExLBsRtVletI3zWP5w9SUznJm7aVUtYlxPLx7Ki1pWf3SNIAiHA4E9VhDESpHRdvoi42b70lYQxEpyx94mg8C3zXT5w+Vy8WgNQY3IHvXTualOmY7g22QMhDYMhMNhIB2tHfA1OwA4g2o+H33NDqidQWwbnThgQBCHM8VX3sy0QztQHfOL2rJeTG0YOGA8cLx2INbsQNylHYg1O6DtO8fcNHQXxpLU2LlsSlkDbiv7kZvahpT9cSP3eKra0eMDgYKmqG0864A5hxnOeFbJKdPnnam6Eag6rZW0eWcybRg4YM5xtLWHRLVYQ89LTdWFQIlqsYaWxZhs03DVO7DYb6tR0TMlLADCNQEijIAYVtCXtDz15FumvMZO5tAMhDrGDy14GPuYQ7MP6kwiNs23jQ2sC8UdLMI60heuU3VQIlWWErK3yUFkaoLA2MjWDLFOq/dShIB/8ZRr0tYsU26aZhtbmBc4LzzrB51zNZWsDlTmTgmB3DVBYOxg9jiCXHME+i52rlaUUq45Am0XO1PTxNzYvOIQyLUdjpR2CIFsahDQNjCzaYLA2MPugUB1QMjt0BHk2mR00IaD2bbMr43ty7F92ZSp5lrInLW1z+xagDt2L7WKatjdISjKNw2/jc1LzcBjeXuAULO6UyfUPoSQ1aFmaILA2LvsiTNqfEmj36+Sq5u1co0vabSbtXJsGt0bW1VDc/Daz1jl1ASIsZk9sF5V1n6+IOe2qbu4v27VW8ojdhIW9k3l9GrTdh04LPXYaEi7Ly5ULvwfPn8XO9O+ik3297+cXt6JDr9f5vYZpb0nJLDiB7Bt91TiO13Ml5+vZsv5eUUPHaSHp8e+TBWz0/PPxQaKlTZubmeLr18w/TD5ry3K2BbV7VbW+mkU21ntVTGNc4XxcHU4d7RzBA6eJ6p/b0cMoOuDBq4WQCsXiGzgBN7ltNerrF4lU1zk/1Bf5PnipvEadz1pybZbHbRX1bVN/sXDZbL5SG9qTygxrSlxis1CWEt6a13tv8dQu8o1joYl7V33TaMZcazKv7uEu+7Puqg1bgH2MOGgweLdbP0YxIt874lOdhxS9lq52uYBw9n/09bgNGs13Ti8fMCAMx9twJl2NkyicUJJ60Keymun5+f3V/eXlUGhVbD40K9PVMwrXwFZMKf+TbltBuqA0Zc72uirOm8dwNG1Lbim6paeVOO0WOWgnCWw8GSfof8ZSNzr1Z1MuWzzTw0gWev4SKpORE1TSXuMXsc6bnOoQKZlgmSsyb+iLslpdYltsaOxIi/ZxlyxjVlUgWuavhgrvReKoacq77q+5F+MYKor5lJtpYx12gjGo3m4fd89m8pt1PPvLWlrJRSa5ifGOvAFTAnt8W/lX6ixlJy+Dmyq+8NyV7voETyObAkiagn8u235kIdaPqQOgFPTjMRYKsNnJADuouaeqm9ZRm9ZHMvelfISVaOhpC97V/y7UY4MrDDTMjIwdtXeYVetmjtQ0oKOmrjvY836QsEtnm536qZ9DtOa+hBejRDglNPY1hhdsyYfvFcjVzYMWFyise6+49qScU2M+rHu/oq1Wn2sAn5n4BsZPu/jPg39i7bItyR8La9QfyrCmtDI66XucBX3XdjE2/n1/xxLM9JEnAL/qIf8NosoW7BttFURk2CxZgHd4dWr1Hq5bn8oYoJs3a5o+wMmN8v+EIh+abniP1+heGjifvji9qnicHd/tsLf5jdx/TwWlPJjYK/ClKlRz0wtQ+lqtWzqQF7Otoyqlr51HchJqlLGqfZ72F/wypn2DZkb4lAePj6j7mgDNH0n1tqdGVJrYEPqRie2XfZZK/u2XebK0Hj8lu+Rbw1CnvGv3mckMPO22szbYhQdGvNuuQuk33kWatR39YZba30Tx2rMundXirTwKJF5tzm31XaSLFzKeOfRSq6aFHWwn1pFP2bcAurDfug6Nqsy7tCUcNsa5dTWmGhUHQe0YFNxW6pU2xVGFmTW8QqDqfVgqfYLRVW6Dr10ebR3W+2ddlvbhqEIhFBprG1sCYL19GNnduaxnGlqBo/59Zhft+XXTptfu6fKz93V6eXlyeXp1a2404Ko/yGubYJ99bid86okuXbbt8r+6VgMlKvtKHKABasFDA6L+1yN+++0+5Ocb0SMORhi6Fhdmotq8m5VgT6+CBCm1sCR7VBo2ybwmibkx23pXMVHvtDUdK21JN01lgFTy7H61kVsjZmcdj7WxfZ+kHnVjKOoH3b6/H0LaMCtHQG82FS52F6rpdSy4GFN6nl4vYoudbvIRz422mztnpVSY6l6lRLo3nmHPol6Bbe7dGNIJ9vbGhHe62kbvkqZMJgHrxWIvJY277tGxIwhHdcy6UO6mgJD9yJAcLBqi78e3ndM79Z/ewNqseK/fadVkmnaQjKG3Q1ht371nK8x57xFw271rcUmh14nnvtYzMSlbgfK3W0852utolBbu8YeQfU4ofwLTlSr0w21PaVQB5tq68N2/2/yqtpl2Fa69O1rVsm+qpf6y8691I9YR8t50ObIcyA+NlZ77Ou5nY8tbuefzO38+TXdjraIU3MW2uzfpzbeqH3YYSfrn887Jl23zvWbulkfhW7Wzy/K62XZ4YMj3Tu1POocNHRt0exoVhrMiifQrKiTkgDuLN2HVfm4g/74d5bJdM02xfeSdFbZw4aP8WFydnk/u13MV6+ZTn5b/dKvIHbO+OzJ2PDw8P/qfW9Z
This design, I've found on reddit seems to work, but its such a compact mess of combinators and wires, I'm just banging my head against the wall, trying to understand how it works.
0eNrtXdtu4zYQ/ZWtgL60diGSImkHuwWy733Z16IwFIdJhNUNuqQ1Fv6A/Y/2x/olpeQkjilS0tCOZRZ52V3rQknnzIxm5pDab95NXIu8iNLKu/rmRessLb2r3795ZXSfhnGzrdrkwrvyokok3sxLw6T5dSvW0a0o5ussuYnSsMoKbzvzovRW/OVdoe0fM0+kVVRFYjda+2OzSuvkRhTygJdxEnEb1clcxGJdFdF6nmexkFfJs1KenKXN9eWAczbzNs1f2+2sMxjuu6nuUMEv9HmwmXcbFfLC7V45jHz4qsji1Y14CB8jebY85WnMldx3245TNlvvoqKsVh2MHqOiquWWlzvaHTG/bsBpoK3CBmfk+83PJA+L9iavvH+//yNPyuoqrwHD3hdCpLuh8428wzqtVndFlqyiVI7jXd2FcSm2u0unu+ds7x41fxTi9jU1kfwlgVlHxbqOqvanpFGeiw0HE7lXRwfZ32USxvE8DpNcQwPek6CD/fk+XmC3QD1MN9VDlN4fgq9C/2uzuy6FvFScFRKfqqjFeMzwIWbYgEoAtHjUY/DU0uDpZAa/7II+vbVj1dpnB7sZxBm4gXZmSVUwGVWLS6SK9lOFQIFraeCKjwtcZO9MTgcuqgauQ0wXBpQWoPDuPEpcNTVkwGUJsp7AdVxYv/Ug3wAT8kH24zxOSxUYU4KA0Dhg0P/EsUzxBWEQDs4biNlTxiXSkwVaTU4HeKOjwPTYAeSxz0//4rjHJko8wKYyCtlm+WSy1JFfYurIBrJ8DEkdEW86G7tbVHeZ0kpkWwPgyYhkpyByI+I4+/OU9RooyzfzAcvzifMvmIFEHxnfxLBU332g1Fwfm3J9BEv2sfPIDGT72DeHRTp8qhZjDCsU3MdYrRQw7nvXdI/VowirKtz3YVMww7Cywnlz6nFJuevQeogpzmFQCXJ+4+HHliCKF5lqEgyqSc5vO+woHLBakxBTTYJtaxI0WSpLLzKVRQNVCQaJD9ikPmDL0sOfjK7AkcrjkK4gANFlqkwwrDJBzr+jhnLDhfkdtlCPNYIKq2LcB5Vr3u4mFPnoTABU8fjOgzhQ8BAfgKmpwiGgCsd9TNWihZgLHO2xehBhBY777t0TE3XxUw8aqBhy3vJ6vJWotRA1eiuoFjq/ndHjagC1FiKmWohAaqHzm05wFAxELYWocZYbrBQihkqIvWFq7Q85FTyz9nuS6tYnAdNPFt2Jcz2TDTUFkZaWfcUTFlH1kIgqWo9ixh9FzH7Q47j5rQGyFM0YQPSzXEgG23v05hYUEm8LcYiBFD3we2mjdCRtHEobhTnUqXi7tuHts8rbT2/P26K/YiUg76MDo7X9pxGTYMkCFDQpyDVP146w8sujY+vnEzYsGn/qpX/Z79ZdwnuDMx/p5Uuol/NpvNwqOl+fIjpfg7w86GSvvJ+oAT+my3FEBvvK9Tm/6KVxAegq3kVxJQrDGpRewlq3eVpcsV+IAnAaBnMaIzr7kjQvsvsiTJLwJhbzMhfhV6Hru/IWn7esGZQ2K1GTwY/t/qcLNZulF7UsPJOwegzjWqyicpVH1frhKSQ1QJcy8UskBC0mjWFkldj9G2LJRIOtBOrgTvI43NyE66+rxyyum6eTV3vZdh9nN7Ic2bzcWdg0gVd5Fm/yhyx93r5tdoii85AP8th2xy6Rne22ZOkqCfPnTc3iqCfI25s0LI0K1+s6qePnNVG7yyWiLMP7Zvf1fnf5oZZ2Wnwg/o8f1g9hcS9+8LQWhe3WSyHtYAQmCrCnGIzf55UdWGwneOLhqWWGLkTA9mFbf4CpkxMEdgrPdIIcuUyFBzhNsD9fbvicQZm01Fanc0t8CiYb9E442RMkxJm5YBC1w/mesipfdop886zX7nu7e6oeYg4RP9yHmGn6zOa3wciedLCA2Knzc5qCoWbUcrSd4gEFXzO08kJgJk6WEMN2nxNViKeo793XPVYLIvUhApX70cEcYAkeG1EpSAl13/B6nN00F4Riq1X46Jg6VtOg0d4aRF48v8GT42Q1VV2kJnWRQtTF89swPgoGqqqL3NQop3bq4hnFRTL0RZOPdhrHqeRFwkACx0h5kTIrXvBkvJyiRDshK3Qgg+Og+o0H42QnyoFhn0LDfqf3M7ZXTO0UsXeDGqtz8gGDA020JgPzgDkbaZBLEOv8/OH9up/1TxasfzmlvrmERHdVnjY5I/Nt9Ul8Vnnyyyt5cs9Rk9ifd5IBBbHQdUUDCwgmLs6bT4pIDoK3kxevX8mLzFJdZGSkEWI7eeaClv3/+/1vO+n7VG+FoSoMDcRxHVc9beRgJLOWwltwOVrN5Myy477fwEbOR2OWshqZ8JOSFyfGBENeBvqeg7HhyiyFs+nc6gJ1s4H2OExXYyZdjYF0NecXo7MBUYHx8a1ypi4rMoMMUtbcB1lVy7hZWdMeqwcRpKy5/zW/gb4MW47HlJm67wykjLmPqerC3KyMaY/Vf6QUpIy5793mEMlMUgoHCWHu21mPbxo/dYsBMsv5jQgdJ7OoahM3LeLiENHtIgwF8OHaTqtzZO3DAyuNg1xMS/rTxAvbBqYScnqMMmXNKrVdGDeuTjpVb9O3WXpB1KUXP9uZAMS9yIB0hUHSlZE2ZqUPvTvjyJVrnB+zDg4PjGZk1Xq547szar0JJPZzrdgvc6h2GcfVq/8QZ+Y9iqJsn4ITHwWcI47IdvsfuVuPvQ==