[boskid] Not closest train arrives at the station

ResidentDeath
Manual Inserter
Manual Inserter
Posts: 3
Joined: Thu Oct 31, 2024 1:51 pm
Contact:

[boskid] Not closest train arrives at the station

Post by ResidentDeath »

Why if i turn on train station, the train with the smallest ID arrives, not the one closest to the station.
Shedule is same.
video: https://www.youtube.com/watch?v=cHHwZahV3HM (eng sub)
make sure that the train id on top must be higher than train id on bottom

Code: Select all

0eNrtndtuJElypl9lwcsFqxF+MndvrAQIEiAI0JUwFwIGDSKLzKpKDMnkJJPVUxj0A+yD7Ivtk2xE5CnICgv/f6vqUW9rRoC6gpnxpbu5+cHczcz/evX+/mX9tNs87q9+/OvV5nb7+Hz14x//evW8+fi4uh/+9rh6WF/9eLVbbe6vfrm+2jzerf9y9aP75afrq/XjfrPfrA9vjA9fbh5fHt6vd/0Xrk9vPu+3j+t3P6/u76+ur562z/0r28eB3GOkcz+k66svVz+GGH9Iv/xy/RXI06A0Dwo0SOZBkQbleVCiQWUeJDSozoPyGfSwvtu8PLxb369v97vN7bun7f16BhlKq2zljNz3OvT4ri/h0wwoulPJeiW72+z6nx0/dX3791q5323vb96vP60+b7a74Z3bze72ZbO/6T+7O4M+bHbP+5uL7u6/PA0/fCjR1bkg7zf79e7d89Pq58e+hL+MP/C8Xw19oBseHp5Wu9V++J2rfxw+Hgt+MxT8aX33Nf7zZrd/Wd1f+IdvvPvDVS+PvkVWh+Jdffy0fd7333pYPfZfvxmpzzf3m4fN4Yf7brjdDQX9sZuRY4XaONV8apDk5hvEdSCpNEkOJNUmCe3lXZNEd/PUKSS6n6tlQju6b5LQnh6apAySUpNUQFJskqY63veOj5/278Z5Rx8ukns9XMS5GaTDsYHAOhybCOylK9y+7D6v70bou9UctsxjZQ6L9YtY5NxKXpmQI00KCunSL8Y63n4aJ4jD+Po1sIZXwLYkxYr3b/EuzfEzxy9k8bF+lSY9VJNzpUlK2wd+7tBI/NyhkTxNUuQUAj0LaWWKNEkrE71IVMtErxLVMmV6PtPKVGiSVqZKz4xKmWJHk5QyRUfPjFqZLjr+aXX/4d3dZvVxO6wxlQknneax0J4ZIqb12TV1NUaapNWXmhmyy+TQHcXKh4buSM0M2XsSX6z4r6RT5/BYV8q+OTSnjiYpqpUcuOi4DF7KNkDyIMk3SeiSKjRJ6JIqNkkJJKUmSehlnrKDkzJN0spU0LVxrP6EerufMMeFDY9Y0zx3rp9Kh2MzgXWoFFLXzWPn5gHx9CpRaSYJNElRHYkgqak6kkBSbpIEJNUmKYOk0iSBtsJk5tVIlV65Km2XO3q9qZHozWStdtnT602tTIFckWW8J2ZwHdXuiTmBpKbWZwFJzZ6YM0hq9p9cQFKz/+RKr1wVUulokqJhBR7m87AtCE92xaOzUh425NBZqQQY6x2BjbAUho0ptIuVRK9MtWYSmqSpDtgxQnOYK2DHCG11BjtGaK6WK9gxQnO1XB1Iaq6Wq6etCuUorwaapJwu1nmFfz8HO80pGej2NcGL0XLaV5bX3FmswMU9L53fFnf2uCvjXEUMZQ5bUGy/Op3Hzg0nFTYgUhfnhSuzR3Udva7L2qmfo1GioTwqRBGHC9F1gV73qEXkl1Cq4BJa2+wc0SFdJ/hE7PEe6bqMF7gSXdJ1cOe5TPFAn3RdxZcOheg9k5PuZnkroaeOn4A0PQUPvqcoTU8dPwUVDRVpVNVQxLRzWsUWQMmd4COuwp1v20wPk2rVeaNcbZBLDzn5qry73T683zyOfiqLpnAZ93znfGieD5J4fv3vP/717OR1ffVhc79f797+ten4cn315/6D0Zfl6nG7exi/9Mqx5h/GP7wMPjful5/6/7u+2jzfDBX4sLp/Xs87iXT0oK61jXc0SmsbT9hTHaHhHjeoQkdoOHh+Px1y1KonGqU2CLjdnM+2vGh+Ox7cb861jSrgQNi1UZUdU1VU6HAT4XgQKA7QuODwsTqeyohwPb4P7hluwOeAbp4720NCxI2EepbvLCnhJSxMCYWdWnRlQic8QC/RCc+3UaDLigtNVERtqPNQL5p/WnQ0Si0VeNriYhsFHreU3K5gZPfHdVRinR/GCi57+26f1o83H1f7nrrfvayvzx/s1qu7m+f14/Pw/dcfIR7C2kqmW/YO/oerX+brfumeY2GX3CqPtW5sg7qYaXGqLVOapRO2dLWJzCRy4jugIQuLdE1kZZHggdKb0fN3oeUT/wdFnG+mH0CckRan6nMNjj+TGURFwbamSCRm8YSehHXtIhYapU0nCdzy79oLAkENtvYsLqjB1l5bgI4OuWvP4oLuWLZncYEXnbnLxKJe4CVo1pag81xi91IYbsY3A5nO9spFomFOe4Zb4XYLYdFYyOgJWVsvM71DqaPQHcrcRoG9JUgbFXFT9dSaHtC+jG9X1o7hEtuVSnlntS/DvSW5juEW2tIJWlNVGuW1SKOOtnS0UhVHo9RSeTY0Ty9VYGMZdFRkQzV0VGJ9wiQwi9xxx3dxlbt92T+97LnQy9maCF0TtdVz05hwb8TRWv0WOhpCb7JKo7SK1o62PLVSVTogQi8Vb3ippQo0Si1VpI0OtVS8/aKWCtR6YDCvmUappQK13bWHzYn7xfvNx2bQ+nndGGaj5boOj8C8kNoH/r4jIkbzPHg+vtXj3Mpw4f11SY7hRpwbGG7CuYnh4vZ/otot41yq3Qq+X0G1W4U7higdYzY02eEB2iL4Itajfhpv1i2zKE+jtPBph5/rdoKbGN5F3CCPDBffQPBU6+AbCCEy3Ew7OkpE5EBF3cVyWaLHr2ISu9kfqMwPpMnS7esfmM8s0NFeim8lMytx7+DzUncaz7ECe9p01LIIgfkP0mS1oaJAy8pJG0XFuSZ30akEpRDw6DlxbRcVPScubRS4ueBdGwVuLviuiUJzG/jQRoGbC963UWAX8LGNAruAb/cmML9B8u0uACY4SL7dMVGviASgQG1PQAVBbU/tPoh6RaR2H0S9IqTdB1GvCGn3QdQrQtp9EPWKkHYfBL0ikrQ7DugVkaTdnSOo7dLWdtC5IElb2yOo7dLWdjAPQZK2toOJCFJuazuYiSDltraDzgMpt7UdzEWQclvbwTP4lNvaDp7Bp9zWdjAdQcptbQeP3VNuazt47J5yW9vBY/eU29ou6DFJW9sFPSZpazuaX6C0tR1NMFDa2o5mGChtbUdTDJS2tqM5Bkpb29EkA6Wt7WiWgdLWdjDNQCptbc9oTrK2tmc0KVlb2zN6KNjW9oweCra1PaOHgm1tB1MLpNrW9snhOJZ2dgpNGjTTp7Jq+UC9r+0uNDkMX0qHm2pV9km+Qzpc7dD050+b/RpIh3s4nz1mwx1rcTqmNSbK/ZeB+rzev0mJO2Ee/2aoy1jYI+MYb/SKO/4N595+WT2+Sev7h3/6z38bg5nuD01xSH79sRfeDxKDC7nXb5f7OSvXUGMKY9TM+1G2qyH4aZr413WzO4OFTqWiKmBx9Am4iqKT9qqddeL3MO6DaTtg0xp+vQPW6Br32+f1uaVnfQ6Onx0UZNer8Fd+B+pmXV+U7W71+HH99p3Hl/v7Xh126/Xj/Effo+v+a7Pbzos9sqkOdWWgcxzrKKFR6bv6VLPeJodB4fu05KgoJn9sX+js7ZN2VXsmnd35eBrxW3JwB4SqdpFKhHJEaFPe4FCjtU51RCgHWDpPhHKAyEDEXYDISESHgMhEuwH9rjS9ChHOAYo00yJVNR31FmrPL7XSnlVRS4fd0ai/T1WD3Bw7VTnfUpHQoS6Bsd2ugXZzU1ERXNq6+J2WtnNKA69s77d9A273m89rfUmrfPlXXuP+82tVe1fBgS10iW5MVcVQT0pp60Wm3R9VVEFVTH59FTsaVjM6dlCFX9NKWrLO6AkxdJVuIU1vHDpPNLc7A+jUJm2XjoDeutN2ngjotTttl44w8WMD5wbv2g0AjgFtj4yA3sHT9hMJLoMd14e/wbbHm8++Zay+Wz9+sa0M0NuE2v4uwYH9t+3vEsDMQ9L2dwlg5iFp+7sEj/bf9qji0f7bHlU83X9Dc4MwgJmGpii1fGD/De2hCvSJk9AeVUCfOAntUcVXcFQJC4Z8mL0fp+OSXgflFCPOwh1Y7NhxXpBh4kO3fAdh4A5dvtO9gHfrp+2bA4Tuhxrr8L9Suly77LoYq3dlOHT7OA6mrw4QZm8UdLOiQDfaRVghRzwpaCWcgMPEQRBSOo0us3AB5ZEX9j7SLBkcG9q+LwG9JantkRMC5WM+JWJagF6e1PatCejtSW2PnwC6FUrbtyaAboXS9vgJaLKltm9NQJMttT1+AuhWKG3fmoDmLGp7/ATQrVDavjUBdCuUtsdPAN0Kpe1bE0C3Qml7/AQ0J1HbtyaAboXS9vgJaGqftm9NQFP7tD1+AuhWKG3fmgC6FUrb4yeAboXS9q0JoFuhtD1+AuhWKG03mAC6FUrbOSdM3AqXZ/DKrmhAL0Op7X4kqPK3+5EkOhJRRQmecigQK3nhrr97c87SjpQLRC6fU+Z0JMQvSOUu1hMyAi/kjs50jkTgheyo2MTJOidDi9nsOX59xZ8lBvgqt3KKUQaS3wcmMZAw3ETnGxdBWk7gy9zcRQ6zpMzFEnpdB8osv3D8oPNnNxdyxSVx6hsZ6XSl+3bwrE4UOJ9DOt2H8BY8X2CPcwPDxfMl+8RwI87NDBfvc6f7GzAunowrUO2GJ+MKVLsVnEu1G35rTWDareJx5oFpt4r3t8i0W8X7W2TareL9LTLtVvH+Fql2w/tbpNoN72+Jaje8vyWq3fD+lqh2w/tbItotdnh/S5Xh4v1NHMPF+5sEhov3N0kMF+9vQrUb3t+Eaje8v2Wq3fD+lql2w/tbptoN72+ZaTc8X1HKTLs5vL8Vpt0c3t8K0254JqNUmHbDMxmlQrUb3t8K1W54f6tUu+H9rVLthve3SrUb3t8q025E3qLKtJvH8/F1TLvhN0JJx7Sbb/vR+9bGS/SRgIgGwTPtdYwGeTzTXkdpEJ5pr6M0CM+05ygNqjiX0aDQvFTjzbbNLMQREE2D8DuhxDEahN8JJY7RoIDnrHSMBuE3RAmzhxQD3pM8pUF4T/JUu+E9yVPthvckZg8pRjxnJbOHFCM+JzF7SDHi/Y3ZQ4oR3seXcxZHiIv3N2ZvKka8vwVKH/D+Fil9wPtbpPQB72+R0odLf5tEh8xAZQJdP67e369v7rcfN8/7ze3zzc+fNv3zw/bz5vHj2TF5u9v0v3b0mut+GEzBb/CZ2+zXD8d7Te8msQOPL7f369Xu3YeX9Rg2cPzacPvpzebxc1+A7e7L8TrU85Mb3flu/3S4y3S4zPRrwaSOT/6MCDw5PvkzxPV88meIOxkwVruP23c/D+58S6mfzRoyTECTVhoCSWZLZEhHDdXUkI4a4hrSUUNcQzpqiFuwIUG679Hgv7khYfRgYAeLymfwRppCiEzbjKoLPghRO6+CD0LUzqvgVgK18yr4UELtvOKXeAm184pf4iXUzuvEA6i1KsyROMuPuOePUFu6gnc4aksXd/gRaks34x2O2tLNeIejtnQz3uGoLV3c3UeoLV3c3UeoLV38HjChtnTxe8CE2tKdOP20OnJVfGdkllu/mTtb3omvD+LB17V3u4rjiJ5zrYsTZ5+GJPJ5KxVwWIu4s08+3wwHcfFrJkKHO8LFibNPSw4hLTnCxSJUi02i4CBHtVg499bJbYaQo13E3X0urpF1XhLw3ZTxPEtUoJfVaS+7W+3mbke8+JNXpWdV/NqI86Z8RRYJhD+PWxbgxIMHiT27XG8BSXHSkx5W9/fv7lcPT8sZKkszeczBbrr7njmFVo9f9p8Gq+tVQLf7OqD7+urleX0zGmDPhwLMC/XS0+/Wt5u79e5dT3q/eRxJczcUThQJCsw8Yi+1Hs216dMfaSn84XX15W1A+//93//naqgtif2XA/aVIE9/WN8cX1493lnYk4Seb3J4/orF/OmUlOggZUthn74c03J+2G0fehO7hx0t/sFgnlUpoVRKuu63oFL/MSNUs/yGqGJNOtkonfIb6HDfRzr/YdasQqfILNp8x9/JWf6eLKyf/DtonpzKrf525sm5bENvdylj6pdUrkro7e9+VRtC6LpcxkTBYx5hX3xIvqbo+rVNFO9S8d0lkfAPrktl+ErsSie5t2p8zF0+fmPc3JyV62X99bTbftytHh4Gmbx7flqv/rTeLSt5W8JIpqbXCcQaeadP4OHPD+v9ejcOMgfmzefV/cv6ZvN887TZ3346bxBveuLu5aGv+s2wpzt05u1+Pf7b+aEhXsOe7ldf3q9u/3TzeXv/MpSwF9H5bw/bu2OZx8bvNXH7883T9v7L06ft45fTODJ8sN59VcpP/XfHD85FG/+0fbx5WD2dtPDw5sP6+Xn1cfipq/l283T+0PI7SlSZ0OR8k/orJkjqIpHdtSBRo2ni1NtOyQoihUjJCiIzkT8VRBYiyyuIrHT+0N+VpsNp41xT050jsrtirYOmj3O+tTRKaPo4F/6+NHolt0nSnePLy0t7h6yRng/N/vz63+P55t36L+Ok+GFzf5jaXv21mcHz+urP/QfjVQf9RLx7GL80Y1aO9zS8G85Hf1IqnrA1oQt/XxMya0JHGtJOHzL+dpbiv85Zivwex7+/bqQxufObZvpeOzPft8S/4q7MP6u7Csllo6rU/0JVeZtE2NfyLbIx7SmkSfwFsqt8Sb5R2+coCQ/CuJwnzW5+J9/h6UEyvu+dvGudHuRJ8lptQeM9XLoQiNOD5PGDs9AQYKQPcvL8sOwTfZCTHaAsk3iL95uPzWu3TreC526+lJk+0HlbytlECwkPszgf6GiCrLYDHUiak+iK3fb99mnbW/t66H8vxCFN9p9f1v0Adl5PKSuuYSiZ+0U2j366JM8cMhrOQz0NrW1oYKGXS4x1KJtqdnIZrg5NLPSSzFCHCqIa5XuqBnsb0OSKS70axX5Tnw699MnVbrP/9LDe97zlI0GZMKETigv5zXqCXECcDL++KXrMzWQp4Yb1Ym9z7k55Xf/nFW9XHk/B5tcNk5gTyNpL9XUX+s7W3pxP73cy7yZRMNSJ1df68DdcW/7L3FGrdXH5783F5fWUNrOfrsrWG2Xrfmuy/R4G0z9+Z4Pp3xcEH9ijxFHks6jIHiUeW+/b98sOyjdbqGS/f06dHKZxVdjh38JQ9ytu9HxZD8dBwCkW4iKT0My5lyOO79a+v4mN70jfOqgrEHGB38wQN4dMHX7EgyIdfsSDIj1+xIMiiYv8UGRkjzh+X5qe6FsHVU1PxAV+aOtk9ohHnbLQnMYu/EoN/f/pEc8kFIy+Kk9VFenY45Pfw6wqzrZj/V9qVbzdsZYOWggrDja/4lHBRMf5LXHxxqZxv6GmmbuR0CrNqeYbxBnsd6jpg8Y3XOykQxOwMSbfc890EvOIVqO9vTkJeAQ20iXGxV1qYbfZJLY3S4WeSFJ7s3QS3whCpb1ZmunbYXN763KawlxXtO+5A5uD7Zjv7VnD7MoMD3w8H/MpypYTfcwHnYZkoQ/osNMgPNbxfECnVb0Y09pnr2lZNSbiH4mvKz93gVfiAhwnWd6//oEyy3fGLO8zFQizP+DpbOw5IGpRwreDZ7sak97czYPnuYlO845xhU7zjnEzneYd4xY6zTvGrXSad4jLpDdn2o1Ibx6YdiPCIQPTbkR688C0G5PenGq3RKd5x7hCp3nHuJlO845xC53mHeNWOs07whUmvXlguI5O845xPZ3mHeMGOs07xo10mneMm+g07xhX6DTvGDfTad4xbqHTvGPcSqd5h7hMenOm3Yj05plpNyK9eWbajUhvnpl2Y9KbU+2W6DTvGFfoNO8YN9Np3jFuodO8Y9xKp3mHuEx6c6bd8PTm5zTvGNfTad4xbqDTvGPcSKd5x7iJTvOOcQXP0J7D/EaE+ExAvAYpdJp3rIaVTvMOcUNHp3nHuI5O845xPZ3mHeMGPEO72vghEhBNDYn05o7RICK9uaM0KNNp3jFuodO8Y9xKp3mHuER6c2YPSYj05swekkR4V3EcXue4MssNdPp4rLyRTh+PcROdPh7jCp0+HuNmOs07xi10mneMW+k07xCXyQ7OtBuTHZxpNyI7OLM3JSnQ2cwxbqSzmWPcROcOx7hC5w7HuJnOHY5xC507HOPyibAhriERNsblE2FjXD4RNsblE2FjXD4RNsblE2FjXD4RNsbNdL5qjFvofNUYt9L5qiEukwebaTcmDzbTbkwebKbdmDzYTLsRebCpvamc8DzNHXFaL4ZE2FiB+UTYGJdPhI1x6zdzZw0XNhG2Jx1RhM2L3d5wmHiGcHmbQdcTmXiIcImbMd8ZmTiKNNryEu8fEW7C8wjIPHdeR6hE2bFc3J/SW3nM86lE2Wmig1/xZ8cQwnGkU+Qyz624J5HSjq6bA1c4o8Yl8UBCRtNXriN6cEVy6ZWIZ1EeROU2KoAoaaPia1XSHdIuShp/wGSXwFLWdikFRJU2Cou8SRO/bRVVQFTXRlUQFVqo3HUgyrdRoPb72EaB2u9TGwVqv5c2KoKo3EaB2p4AFKjtCaggqO2ptlGgtqfSRoHaLs0+mMFMjkm6NgrUdmn3QTCDY5J2HwQzOCZpdxwHaru0u7MDtV3a2u5AbZe2tjtQ26Wt7Q7UdmlruwO1Pbe13YPantva7kFtz21t96C257a2e1Dbc1vbPajtua3tHtT23NZ2D2p7bmu7B7U9t7Xdg9qe29ruQW0vbW0PoLaXtrYHUNtLW9sDqO2lre0B1PbS1vYAantpa3sAtb20tT2A2l7a2h5AbS9tbQ+gtpe2tgdQ22tb2yOo7bWt7RHU9trW9ghqe21rO5imJ9W2toNpeqZJ0lRU+obMa1GDgnpf210IzFiTarsLgclfUm13oYjqfbsLpQ7cgaiLOxCNOzPut8/rcwD6XEqL40fHOyR267ubN3kthluuh4uRV48f1/OfjYH68x8xd3dMpWBJfZKToxtHU+SEXonRHt8SmqWrPb4lcNNqWqxfT2UOH81ojJIsYl6FlC9/q059h0wL802Q6NZUdUzo9G2qYmQ6fZuKKjQq/j2tTi+3+g3J6jQVkY5OW5Z+R8mssji6/qooPZG2LSHJrLIEIm0biIxE2jYQmYgcayBSiExwIDLTact+X5pe6Pqrml6JtG1Y6+SOTtumzS/Z0WnbVJSnUX+fqga5hW/IAKdpXUbzLrZN04ymMGwbzFlolFrBDC6+Xfxei++jUWZcfb+xp0wW3Lwk0LGqbQRn9EK2tmleum9IUaY1egFHq/apeS7gaNU+Nc8FNCmBo+4CdlvgAL6A3RY4NS9gtwVOzQu4sABOzQuo98CpeQH13re7UAX3kcQvLPNm/dvyxAsISTh2iSwCnLky6Bc0TZanigDsD7HdtSrYH2K7w4N+QBLbvRT0A5LY7qWgH5DEdi9Fr7KO7V6KXmUdm720gH5AEnMbBY7+sbRRoLbH2kaB2p66NgrU9uTaKFDbk2+jQG1PoY0CtT3FNgrU9pTaqAoO2RNPJ8z5sKA3vLZ9qAroFyRtz66C3uza9qEq6M2ubc+uAvoFSduHqoB+QdL27CqgX5C0fagK6Bckbc+uAvoFSduHqoB+QdL27CqgX5C0fagK6Bckbc+uAvoFSduHqoB+QdL27CqgX5C0fagK6Bckbc+uAvoFSduHqoB+QdL27CqgX5C0fagK6Bckbc+uAvoFSduHqoB+QdL27CoTvyDISDiHzQEbjwX0FJIClDMywSNSFrbuZwOYCug/JG33mgL6D0nb6aeA/kPS9tQpoP+QtD11Cug/JG33mgL6D0nb6aeA/kPSdq8poP+QtJ1+CnrNV9uppqDXfLWdasrEfwjpTpVeyYK+RNL22ino7Vdtr50C+hLltjdHiRXPkx7wjZWSOjTa7JLJHYgaLHjqjzE6AY0aLIkL03xzMATwuShNL1zUYMFTgYyevWjUYElwqPQlLT0SNVjwXCCxnEKEBRE0nn/xfPGzIIIodDBiVvpcqjRKFNTENwO56vocJZ/nabzvmlowT7soqSjed02TvPA3TKqlSjRKLZXQDiZqqfgrFtVS8c4AaqkqjdJKBTsBhGapDE4Aaqk8fcKrlirQKLVU7VyHuQ1Bz8Fzu2roObi0UZk+/VUryB8kq6XiD9S0UpWORmmlmhwft5JxBDnPD+0rRErxfDq6DNjbpenSNjmOU2sdCYjaColPdATVsOm7lts9s2QCoooJzwBTOqaGld4z0epZOxql1RbMKJGBVQl4cpyBVQl+5cgY2wwvhfErR8YYRHgpDJ4pT++BqlrVBUTVNgqbEuIkYFFFFRDl2ijYvo7nFGG1bQdX/PqQWE46U9o6U/HrQ+I5NRbExdOrd0p5/Sw3wMlnzsmxK2CfVuL+ENcxBUYTszR1q6KpKlzXRoGBbpO1sIpCDWXfRqGGcmyi0FQVk2W1iuLTEhUN5WkjUkUF2vKrvznf9c7kS1xdJMIqKuJsXtGz9Ik41ZYRIpwCLF0mgj5AZCEiNEBkJSI0MCR61v5m9PxdaPnEOaAdUgGK09Pi1LQcdRKYzCAqKtJbDioq0ca9ihLaIldRqDtwbaPA3YsAtCBosk3uv9ZQqJNAaCsD6iQQ2lNkQJ192xM36hIQ2tMDmDxEQlvb0cP/SQ5QFSW0Y7SKArU9tDsOevgfmuZiRQ//pY1CD/9zuwXRw//clhV6+J/bLYge/pf2yIAe/pf2eBVRV5f2yIAe85f2eIUe85f2yAAe80tpj1cR3Y5rjwyJ345TUfx2nIrit+O07gzmyshd20JPEUS1zWow58M057WKEhDVtoXBnA+5a1vo+GUb+Zz3GNl5SoSHSyZ24PDLNsbcj3B58cs2shdi40k8LIcQmJ0y8Hw+h7YOgOfzObQ1E79TY0zfhosR7DxB2kUEO0/IbRS9Yz38ax5VaVSnoDKxSR1PLKCLZGKT2jNcYpO6m+fO6gx+P0bqCsON7Aaw2uo50Si11YVdWeuoTKPUChbWk1NHVXb+VCsIHvNPUVqpCj5vaEo22ynwU/4xmzDOxU89fSQ6RSE8IT3DTew0p7e60Ci11TM9WgcNxc8hXkMRp575VCzA5aTWjr40pHhAGauDC1zPcpytevU4San6rPpV4qAzzXPnJRrp60beSnS+vPyEomlTpc85VR2fOAkA/rLjhabHGs/SCj09qXWkt6O0OroODT6vCMvRLK+yPD3Z6axAs/Q6RjqmABlUenCCTa7TlTvQMNiTBSfXpfGqR2UY5R0+YPXggoMrPmL14ErHOiBDlutAJ4HpvKwqFeglMGWpyg66CUxn5qiyAsgKACuCLA+wQKeyy77pAgv0KrtsnC6w0AXW2d4vSWUVmqWXq9LxMyUig5aHI7cuxnWCBi1PmO1pnqyAPQ7OFDjAd6adNwQwcKSjlEpEhjD0tozJvKiqK3pdRgd0I/S+jIsrzAIL9DDrgG6E3phxcX7RWeiVGRevlwWWo9e8OsvTa0udFej1oM6K9BpOZ6HHI4BOBPR8BNDVgB6QIPJCw34R/QL3sBD9As+/pyx1zImO9oXHprXo4UDW8zYWNq1Fwn2/MpNEJPz3HQXGg3rPW28YGOw5HtB28CB9ytK1qtCRENh0C56r5wB0o4RaH8AqHz1ZD8DKHD1aD4DFkOizwgVWpFfTWWUlmiUqS/AdwFO3zQqKums4XrKLjDV9PXjN/0Cx/oBACTT6X6hUZp7Lyj8j/W9yCI/R87LAxXHyKLrA8/wPeOsPoAIXYqPYUbKOtDmg9jfhzRS1v01O5JkcCKoKcFvEPjRwhV4c6TXlF21qC+QO30FMy1XMjsudkmmdzt76C+A4ODmhR8aRy0IO6jmTc3qI7hsqmhOXTMbzAhfrL4DjYCZ2nakZATznny4b1f6GHvRPWGp/A0/6pyuMorIczaoqC91bzgAL3VsuAAtd3VWABa7uLjnjFljoppgDWOimWABY6KaYB1iVnp1VXa0dzVLLBYbvp4u36QILtGoc0I5g6vfpvKyzIs3SZQ9uijlAv8BD+OwA/QJD9bND2hEd7xH9Qsf79rjqwEP47DPAAq15XwCWp+c0nRVoVlFZkR2jq1NZ9HhfO5VFj/cL5co0Sy9XYeMBFliVDVPQWegZ+mWMXmA59oBggeXZMWeBFWiWqhPgGfpk/FooV6JZermE7kNBZYG3VsVL/t8FWKEL5lVWxc+6wwk2j2KOzS+otkHjvMPBlQJ7C3geFeiBTW1fT6XITt1r/WvG7fQ/kOjCqgrkxeRPqMox0wOeXrRCD1I6C7wrJF9ynugNHDq6YDrL4ad6mekcwVvA86iAn7Y1BpnJiTmBQqrLzxyqsgRy7yiyHRg9U/eIMvKzSVJZlWZph1su4o7u5+lEQxFuV7WB8vTQqUor8nOGLi3waMIj5bp0hbv17eZuvXt3u314v3kc07MsXeFVo5Jo5si5JI15HtPPTJ7+SCeRWa9uPx3yyLy+2Pen042wB6qB9/SlL+jL4/7mw277cLN57FnHW0B/+ekXRWZCykxeyWza4/+7SpDeElnoDfzMr/cG3Nf6PA8qqIQHTPvGkIa6N0xmAFVaqHvDhKVKC3RvmM4AWWXxGyKishI/m2QFJfxsoqH47RBdWoVm6dKq3KLenYDzuImPAjuhyH/XCWXih8FOKPL3CWWUIL/fpXYI4fe71I4qkZ9QlPGDSPHgG6MamtVhMgno0uLNE11avHmi7tYLb56ou/XZYJ5UBWUwTzQUb56o0sq8eaJLK9p2ibRqJro76kUTmqWLLPNdW6ti4bu2hqp0d1SlhaZrmLBUaaFOHOfuGDt1sx514piw1EMEPC/DqWv3BVNQke3aOordtF2SltAsXVqs3bbEKmz/0cVV2f6joiqr8ws1rI5mqa1YPa+nQUEFXk81VKT1Qd1IrYlmqfucVXjd0qqYed3SUIXWB72GlWZpkvew84YALEc6giyxPOkIssQKNCuorMj3RQ2V+L6ooYTuP1GtIT/OJ5VlGOc11EXpH9Z3m5eH1uIyu9qurOv4Hq6h+BFflZvzNEuvYmAF5wEtgZ05CsBKNEuXnPD9MyuoiS/H9v32abvbz1HkTLm+2q3//LJ+3t982Nzv17txo+X5sD1z2BDZPN6t/zJ45v+k/GThhwSt9JXuxpqd731Hs7LKcvyQoFRx4tahN1D23XdsIB/48UIrfaT7uC7URLP0xha6N+qsTLP0Oha+Z1cFVflupqAC3zU0m9uDmRCmrKqyPN/NtCoadF5D8Tqv15DXeV3yvM7rLF7n9TryOu+cguJ1XkNFWuedZif7SOu8cyqL13m1irzOqyha5xdqSOv8guRpnV9g0Tq/UEeDzgcFZdB5BYWmLDgH0USn2pCJ13nVtk2eZunlCnz/0cQV7dbaQgET3yu1Agrdk/RiZZqlt2frcrLJTsxIaecq8ak2mZllEncC+IauiKMHD1V8wm+VOg3Fb5WqqEgPHqqxLIlmqcaytO7ru8S4HSiIYuQmM9BMYhup1aq0Waw3RebXQWpTZN4s1qo4ORtGN3w6oLKGFZGG4ldEutz4FZFeReHHNA2V+XFI2SfI/J6Qiqp8P1JQhdd9dZeg8OshdZegGGwArYoGjddQvMbrNeQ1Xpe8QeO1Kho0XtklKAaN11AGjVdQldd4dY+g8hqv7hFUg8ZrVTRovIbiNV6vIa/xuuQNGq9Vkdd4r+wRVF7jVVQlo6Wj18z6gB4On6Oll1iOjJZeYrHp9ZdYgUynusSKZDrVJVYiU6AusYRMzbrEymTWjiUWv65X1D509LpeL5ajR3rvVBa/rteq6Dw9OquowI6oCzWkR/oFySd6dFaryCZoXSpWJvOVLrEKmUd1iVXJfKULLPSMNwDzBpP+/qSpQUF5fmbUUIEfbTQU7fvmvSos2vfNB5XF+76pVcz2HdyFyhb73sRCtXkfUK3agfYB1YsVaI8gXXDEea5vtGzg3Z69Vire7VlFJTZHR/QRiKEPQfhur5WRdo3zUW3QQrOSyqp8t1dQkXeIU1G8+qs1jLRDnC555my3JS3eG9RnBcV7g6oog8ZrKF7jRZU7r/FZZRk0XqliMmi8huI1Xq1h4jVelXwyaLxWRYPGVwVl0HgNJVTa4VM6cJ2X2UM2X1XhF5pVVBa/nalVUXgjVy2W0NuZuriE385Uq8hvZ6oo3sjVa0hvZy5Int/OVKvIb2cGxfYWfjtTRVVLQKmKy7QbT1A3PrKjWarFnD3dsdUqsiHsS8Wi7dwFcSW6Y6tVFLttulBAPtpLLSAd7bVQLDraS2/PyantcnY7/1o5ADOLuJTdN5q38E48QbF1C+/Eo6IiucZoFY125AnqTgN6zfqEpe40lMwPRVoV6RX/QrHoDX5dXLVjkzwuwfgdfk1e9Rs8d3TJGU511QLSy6AFudHLoIUqCj+uYSkYAxMD3Gpe3rM5aBXmPZsVVOz4JZG2TRM7fkkUVZZhSaSh+CWRXix+SaSLy7Ak0lDCd3INRbszL9SQXwjpkq98T1RQruN7YlZQju+JGsrTvUfbPopw4vYLS1RW5HuiVkX6sGuhWHTQ+4K4Mt8TtSoWvidqKH7pr9bQ0wdbuuS9Ya2vVNEb1vpVQRnW+hoq4rehn6RVFBS/zK+q3PllflFZhmW+Ji1+ma8Xi1/mq+IKHd+plSoGx3dqDUVv7C/UkPbj0SUfIt+ptSrSSVhjdAqKTsKqo2CNP3dqFUXv6Uenyr3SLG1/JxKnt64heD4wd6FYdJCiLq7IBymqVfyGIMWFyia7Eb9QbX59r1abXt8vFIte3y8Ijl/fa1VM/Po+BgXFr+9VlOcHIA1FL++jthETEx2dGL3KSvwApFWRXt4vFIt2Y1gQF5/TSq0i77emoYRe3us1FNqNQZe88H5rahV5v7WolYr3W1NRie/UGope3kd140VoD4aobrwYwm/VKtLLe71YfPitLi5D+K1Wxcy76asoenm/UEN6635B8rybvlpFPl9bVLYSmJjb2kAVvlNrKH55r+7hFHqrPqp7OMR5rWsIvvDLe71Y9Fb9grgi36m1KvKZR1QUnXlkoYb8Ul6XfOE7tVbFyndqZSuhdnyn1lCO79Qait6pj+oeTuWX8uoeTuV36tUq0jv1C8Xil/K6uPiderWK5Rvsf72AhkX9fAFTxy/qtWKljl/UF5VlWNRrVeQX9ckpKH5Rr6L4Rb2KEjYeO3Wq3DMbj73AKmw89gKrsvHYOgu+VVsAlmPjsRdYno3HXmAFNh57gUXv3iSnsuizqoVyCRsnvsDiz6q07ujos6qFYtHGrC56z59VaVWcnM7SG9B6ZT1v1qoFpM3aBbnRZu1CFROeJy91UOqy5AXP5wczeZc0tSkKGyW/IL7K5vHTmxUOwwVGWzQMNwCjGnp4G4AehR7eBmA2RxMrB2CVYTi9TUFB8ae3Koo/vVVR9OltCqqw6O2dpO2Vp8npbTN1YgrYWDE5xm2meISZvGem1hSR3u5ZEB/tmak3a+Q9M9Uq8ie3Kore7lmoIX1yuyB5fuRXy5X4kV8tV+LzkCQN5Zk4tPOtICkqON5XTS1Z5AdGDcWv/5Mqe/owK0WVRR/fLrB4A0CvIx+Frol+cn4L6Nf5UhNNv4T3V1NLRvur6QITfuWvNqTQNxAtlIu+gWihXPyJVsoKirqBKH2HC26SIXRXLT2/NNIOOhIft5tEZdGebQss+uhroY68Z5sm+slhL3Az0ndRnMyfkKmlp0/IFoTKL5n0xi70KKGXi18yqeUqvLdbUrbjC+/tpqI87UOfymvzw3XzZPrELKnHIoXfPlWPRQp9ZLbAoo/MFurIp3JLAJX3g1NVpX7DjqVawMon9tEKyN/mu1Asfj2lakmlbzZdKBe/ntLLxW8hibJDWfktJBVFmxGibpJV2owQdbOz8maEUkXpeJ1XUbTOqzWUjtZ5VfIC3+YrQLkie2PxAou2IRbqSN/NtVAuPq+PBAXFGwcqqtqyafS8V0sEP0t3nSlrkFZYR1sMou1JiaMtBgkqi7cY1CpGfuDQUHRih4Ua0qbAguQNHUFDGTqChqIPkUXbehD+nl5JKov3iNaqaDg6VlEBNSouqIiMGPw58oLo+A6gNym/myRZQfH+0Sqq2PItSobagsr5dj5jEpkvrCEMWKu3IQxYRfFLIm0DQAwZnaUqKN6JTkXxZ2gqij9DU1H8LJCVFXLgZwEVxZsAGsqQwVlFOSytUqzn3ZGsTuWRz/SQlRVG5E/PVFSk045njwxikxPkRdmlrnslu3ZKKol8ln+1+nzOQxXFZ7fKmqrw2a00VOIHfxXFD/4qytAXlHnEcJKsovh4GRXFnwaoKH4FlJWxHzxHjvU852Zti0vAc+RYI8CqIEvaLOEDZjRxCW8CqCjU6q1ADdHt/wKw0GV/B7AMOq+Ji9f5oszhwq/6VRS/46+i+CAZDZX506+iTGGZP/1SUXwacxXF5+9UUXz2/qJoO3jx7mQsLarBDB74TsbSBVZmx9IFFr/AV8XFL/A1FBwFXNs1hK/eLQDLs2PpAsug8xrKoPPKUqTwN1aoKH4Nr6L4NbyK4tfwRZnCCr+G11CVX8OrKH4Nr6L4NXxVprDKr+FVFL+GV1H8ekZF8euZqkxhlV/PqCh+PaOi+PWMgsodv56pSUHx6xkV5U0naiqOP7lSUfzJlYri3RZqVlC824KK4iPeVRSfm1ZF8Tke6vxImh1vsqoo3mRVUfyplYqi9+dT5xQUvT+vo+j9eR1F78/rqMzLShlJ+VNaHVV5WSko3/Gy0lCOl5Uy9PH37OqowMtKQ0VeVhoq8bJShr7JmWzbLX+gfLN3debPbvXSF755NFQl3My/jyCCofcopQ+G3qMM8MHQezSUofdoKEPv0VB873HKAM/HBOsoemWko+iVkY6qvKyUAT52vKw0lONlpaE8LysNxa+MnDLAR35lpKL4lZGK4ldGKopfGTll6Iv8ykhF8SsjDcXfxKuj+LHdKUNf4sd2FcWP7SqKH9tVFD+2e2XoS/zYrqL4sV1F8WO7iuLHdq8MffxBrY7ix3YVxY/tKoof25V71jOfr1lH8WO7iuLHdhXFj+3KDd2Zj+DVUabLd1Vc7njRayjHi15DeV70ykiaAy96DRV5WWmoxMtKQ9H7+Em55DXz2Zp1FG/Rqih6H19F8VG5Sbk4MvNRuTrK87LSUIGXlYaKvKyUkZQ/o9VRwstKQ2VeVhqq8LJShj7+jFZF8We0Ooof21UUP7Yrd1pl/oxWR/Fju4rix3YVxY/tyvU7mT+j1VH82K6i+LFdQRX+jDYpt5oU/oxWR/Fju4rix3YVxY/tymURpePHdhXFj+0qih/bVRQ/tis5+EvHj+0ayvFju4rix3YVxY/tShLy4vixXUXxY7uK4sd2FcWP7UrG2OL4sV1F8WO7iuLHdg3l+bFdyddYPD+2qyh+bFdR/NiuovixXUkzVzw/tqsofmxXUfzYrqL4sV1JkFWgc9fzAfT3SO9VAr9bqZU+8LuVKsozB9DfRxCG3qOV3tB7lAE+GHqPhhLTpp+K4/fxVRS/j6+i+H18JU9OMZzRqijHBqMm6YCI0RL52UMtI6//KorXfyXnSIm8/qsofvZQUfzsoaL42UPJoVH46FoVNTmxnSrsez0FxIACFDbxc4RaRv5ES0XxJ1pK+oeS+BMtFcWfaKko/kRLRfEnWkrKhpL4Ey0VVXGFTWfU66SUs0nxi/BGslZIPnmzjuKNZCUZRBHeSFZRcNKF8TqoIwpqBfziLhfmyQpYcHCiwPi9Fie9AcEFFrJXhCzzYN7jR1OEzHv8qCje40fJZFEy7/GjogI83vh0RgGNYDgfVsvI7zOpKH6fSUmRUQznwyqK32dSUfw+k4YynA8rKTKK4XxYRXlcYVso3ttNRfHebiqK93ZTsjSUwnu7qSjeSlZRvJWsongrWcnSUPh7fHUUbyUXyEquvJWslhHPU3hGdUjy81L5rqAWMrHJFOFC8vOAkrKiTM6Sm619QnmotXmrQi1jhZdawZ3LOIeqHW9GKKWqHW9GqCjejFDSMdSONyNUVKR3Hwqy+1C7hILzabH/FjzfMarh2FmtfaZycI7BgnMl9fN0fhZRC2qYReYn7+rg/abx/vIjCmhxx6+g1DJ6fjAQSHkmx9TIznwXzvR5XKRwvlVvfhtKRfHbUCqK34ZSEn5UQzixiuK3oQq0DVUnp9fLaSfPKTt7MnTtY52cZg/Vf3z3vN8+zemdU0rcd4zb7eN+t72/eb/+tPq82e6Gd0bYzQB7Wt/dHAs8/P3L0/Bbnze7/ctYhZPwx2+8+8NVL9u+JVYH+tXd+ml7NfzC/QHb/7/uh9o3Rf+/3tjK/YDpuhj7aowW78f+4+ur9+P/Xw3nfddXD6vH/oduxvI839xvHjb78YM5WXhMzBIyLeaATz6KpBUwv2Wg6a8nJsiqaMP8GOcNXV8rJN715SjI6iBB4gOBBAqMz5SSGDBxei+ZAuPzplQKjK84M9V4RK7sTDUecZqfucbDdywy13i4lZa5xsN7XuEaD+95hWs8vOcVqvEI74BCNR4ezx0L1XhMnm6q8Qyx3ko+sWrwHADLSOwOcnpA7IhwesDvk6tSLRYUUsaKm20KWFnu4iHj5y0ArMi4A8LpaiIU7NnrmlFwwMGUhjEXTFNqkYjDWq7xhD5fRvUt0+fLYJELfb4Mgit9voyBcYeH5Ci1wN0fkqfUAneGSJ5qPNw14nzKC4Lxrue5xsO7nucaT+jzw6+63rxlSDhKBE4t8K4XOLXAu16g1AJ3m0iBUgvciSIFSi1wl4oUqcbDQ+5TpBoPd7BIkWs8vOtFrvFwF6XINR7e8xLXeHjPS1zj4T0vUY2HO22kRDUe7sKREtV4eMB/4nbBcPeOxO2C4c4eidsFw10/ErcLhjuCJG4XDHcLSdwuGO4kkrhdMNxlJHG7YLgDSeJ2wfB0A4nbBcPdSRK3C4anIkjcLhjuW5K4XTA8TUHidsFwR5PE7YLhKQwStwuGu50kbusKT2+QmK0r3+EuKYnZuurBeM9j9pt6MNzzhNkV6sEBBwcKfOl599vb7cN2v/k8e6YfJ9T14+r9/frmfvtx87zf3D7f/Pxp0z8/bD9vHj9e/fhhdf+8vr7a7jb9zx1PSbsfhlH3G85IN/v1wzFQ8m4gHAv9+HJ7v17t3n14Wd9fXb42hFPebB4/9wXY7r4c4yvPT248vr390zHa8qd5ySRc5JxaCw7m1DrjYE6tJx79q93H7bufB4+fGeyr3TKzlkxa6vHl/n6+SPCgI47qaXjOCXFUT8M9fcRR+oTnoxBH6dPE7WdxbBj8U76t1f1vcWzo9LEBT7YhjuppuC+TeE6t8UHHc2qNDzqeU+uCgzm1xocOTzUensBDAtV4eDoPCVTj4ck9JFCNh6f6kEA1Hu5LJIFrPLznRa7x8J4XucbDe17kGg/veZFrPLznRarxcDcjSVTj4W5GkqjGw92MJFGNh7sZSaIaD3czksQ1Ht7zhGs8vOcJ13h4zxOu8fCeJ1zj4T1PqMbD3YwkU42HuxlJphoPdzOSTDUe7mYkmWo83OlIMtd4eM8rXOPhPa9wjYf3vMI1Ht7zCtd4eM8rVOPhHkhSqcbDPZCkUo2HeyAJt1GIeyAJt1GIeyAJt1FIpE7hNgqJRCrcRiFxLQa3HUZcksFthyU4OHK8NBMHExlXuH025joNSiuIyzW4TS0hQu0prRA+ZmTeu7RHJQsKKSMRU8npAZG+i9MDPrgSBFcLeBbFpGahVIq5uoPSg0wk+qL0IBsc14Mi1TiJG7tb7Wb9yk8RYzX8kBQMn+5OLZFQYcQXb2cgTU1P5/NaqAUlsric5hHfDnXuwbXVJv240W6Twucy0qpa+FxGVSsVn8tIRQVSU/KZB2hKiXSmpJqQ3luIWMVAgflYflW0fKJIFVX4qMcMVbfyUY8QmEgNc97GwcCOj3rEwJ6PesTAgY96xMCRj3rEwImPesTAwkc9YuDMRz1i4MJHPWLgykc9ImBHXGNSEgV2fNQjBvZ81CMGDnzUIwY2hCpi4GQBz6OEj3rEypj5qEcMbAhVxMDVAp5FOUNsIlRGZ4hNxMCG2EQMbIhNxMCG2EQMbIhNxMDCRxBi4IwHPfp5sFPIhthErMiG2EQI7A2xiRjYEJuIgT2drRcEBz7oEQNHPugRAyc+6BEDCx/0iIENoYkY2BCaiIENoYkQOBhCEzGwITQRAxtCEzGwITQRAxtCEzGwITQRAxtCEzGwITQRAxtCEzGwITQRAkdDaCIGNoQmYmBDaCIGNoQmYmBDaCIGNoQmYmBDaCIGNoQmYmBDaCIGNoQmQuBkCE3EwIbQRAxsCE3EwIbQRAxsCE3EwIbQRAxsCE3EwIbQRAxsCE3EwIbQRAgshtBEDGwITcTAhtBEDGwITcTAkQ/Aw8CJD8DDwMIH4GHgzEe7YeDCR7th4MpHu0Hg3PHRbhjY8TFdGNjzMV0YOPAxXRg48jFdGDjxMV0YWPiYLgyc+ZguDFz4mC4MXPmYLghcOj6mCwM7PqYLA3s+pgsDBz6mCwNHPqYLAyc+pgsDCx/ThYEzH9OFgQsf04WBKx/TBYFrx8d0YWDHx3RhYM/HdGHgwMd0YeDIx3Rh4MTHdGFg4WO6MHDmY7owcOFjujBw5WO6ELDvOj6mCwM7PqYLA3s+pgsDBz6mCwNHPqYLAyc+pgsDCx/ThYEzH9OFgQsf04WBKx/TBYGJPCzUDosn8rBQOywed2LJ1A6Lx51YMrXD4nEnltxxjZf4mC4MLHzoFQbOeLBYocCFj+nCwJWP6YLAvuNjujCw4/3WMbC3gOdRgY/pwsoY+ZguDMzfogyCxQKeR2U+pgsrY+FjujBw5WO6IHDgb1+udV6qgb87UEV5+va2Wt5eK+b8PJu/jlktJn8HrYqivZilcwqKvo5ZR9FhazqKjvUcUT9dXz3fflrfvdyvDynVLqnfhucY63VM5XrMHDmkiJt8f0zetr7d7u4Ob351Rd7Pq83+5nb7eDf++uFLPfxptVvfHC/dWz3e9V88Pjw/rW83Hza3N3fr5/3mcaTdPG73Nx9e7od6XH7gD//0n/92NYhhCdcTek393Itp+Nvm9k/PQ51bb91udrcvm/14w9+x5ENFP2x2z3v80sCfP2326yEJXQ/pi/24H/PXHX53tR8S313949Ux3dybakFy2+4uJd5vHtZ/+xr+8+vavatv6/e/xvr1+vJxt315Gsq5+svmakj3uF/vdi9P+0PFjtSPn7bPr4rUVpen1fPz+vHjenfztFv3/9pfDb+2X+0+rvdvNfKAHz7fPD5v7tY351Jc/bjfvawHmU1L8j/22/9xvujRUKJBa8+larTHVNsHTb/ZDu/fPK32nxZqNJZuoUI/Hfr2fnv7p0GXHg+j9omyHTIeDp376v2Y/DCmcFDF7fHp+urDbjs07ND7T1+K9dWXyvzbhyyzh0+GZKKvPypn8uvvudeIYQ07QfRV+bmfeYbi/zFfu+ty7X66/uPg2O2uh83u8Sn2/7325fhZ8sNTPX42fOd6CP4Yn/pxOV2H3h5Klyc/fRr8tS5PbgjRHx59lv7Rl9NTHX9QRujw5K+HwBU/PJUw/Wz477loh6dhcjg85eHnextxZA7fuU6dP3w2FL//rJs8DQEGw9P41/6zOHkaXPkPT25SwfE7/TcPvz7+9Vzd4AZxJjlSgh+fDmKKNR5rFMengwjlOhyfXn/mrweHWH95iu781AszlCNTJg0xPPmRGY9PcfxseEqHGvU1cZenKMcnP5HE8Snm49PQKikdajRKpJfLodTHp1SOn8XjZ4enUbrSHZ/k1Xsy1KGX1ekpjk9+fMrDZ+IPn4VB8qmXYxqf/PgUjk9hfIrHpzg+peNTGp/y8WnQidKX5fA06EQ5lax/Osg6np+Gz/zxqafEdH5vQokHCR7l2f+3L008ljoeJHh5Gj47SjDGqeSPT0dZx7HUqR5/YdClfCrn0AL90/GbqUyle3zyk6ecT0/TDjh4ZE6+KW4qaxnlKUd5yihPkeOTjE/51VM5Pg3lrEcdPDy5wWv/9JjGD9P5afzw8DjKV471lbGk+Sjf4b/XgxPi8JRHyeSjZA5Pp5bIaWiJfNTQfJDTUSfzQRZHOY3v95I5yGL863U99vFRsmepHZ6Ga5nHp+Gv/Wf5+DTIKZfDr496NAxph/qOqnN49MfHdHgcvjwK6TD+ucvjSVbDoz88+uPjZLA8Pp5kd3o8iuRQgAv6UILDsz89T2iHL15++/DFy48fvnj5ucMX++ej4p6fU708+8Pnfvqc4+U5HZ4PvHF6Gb8fTs+v3j8+i7s8h+nvDy8ePj88p3HyGvjn51e/d2in4fvh9PyK3z+/4o19Y8Ib/nHtgtTLsz88+9NzOjyPvzfs7fbPPh1/f/xH/5z9q+fgj+0xfjA8HzrV4YOZ5yyn5zI+1yNvLNh1X+qDyh4Kcng+fD7OtZPvH55jPJZv/GB4Pgx2hw9mnms5PQ990A3xUofnWmafj5308EH/XI7ySYeekY6T/+X59Pk4j7vB4WR8Hit27fJxKj9U7PA8fj5+0D+f2mf84PB8+PwgnxKO+pMP8hmex8/HD65ddcf2Hj84PB9WLuNcd/n89Ozd5fn8/WGZuTmZgIq7XYj9Uu68bbD+sHlc373rl5a3u/Vo68y8KNYXs/XFYn2xGl88Xuxo+MWTVKtVqtUq1WqVarVKtVqlWo1STZ1RqvyL2fpisb5YjS+epMr/4kmqzipVZ5Wqs0rVWaXqrFJ1Vql6q1S9VareKlVvlaq3StVbpRqsUg1WqQarVINVqsEq1WCVarRKNVqlGq1SjVapRqtUo1WqySrVZJVqsko1WaWarFJNVqmKVapilapYpSpWqYpVqvQvnl7MlxeXX3DsC559IX39AtfQ2drQ2drQ2drQ2drQ2drQhW3owjZ0YRvaaoEmqwWarBZoslqgyWqB8r94erGyDV3Zhq5sQ1uN4mQ1ipPVKE5WozhZjeJkNYrFahSL1SgWq1EsVqNYrEaxWI1isRrFYjWKxWoUi9UoFqtRLFajWKxGsViNYrEaxWI1isVqFIvVKBarUSxWo1isRrFYjWKxGsViNYrFahSL1SgWq1EsVqNYrEaxWI1isRrFYjWKxWoUi9UoFqtRLFajWKxGsViNYrEaxWI1isVqFPO/eJKq1QIVqwUqVgtUrBaoWC1Q9sXB7+jwYmFfTNYXxfbiRQGslqlYLVOxWqZitUzFapnyzXFSgGpVgGpVALNtZbVYxWqxitViFavFKlaLlW+OowLkzqgA/Itie/GsANlqXGercZ2txnW2GtfZalzbpWo1rrPVuM5W4zpbjetsNa6z1bjOVuM6W43rbDWus9W4zlbjOluN62w1rrPVuM5W4zpbjetsNa6z1bjOVuM6W43rbDWus9W4zlbjOluN62w1rrPVuM5W4zpbjetsNa6z1bjOVuM6W43rbDWus9W4zlbjOluN62w1rrPVuM5W4zpbjetsNa75XzxJ1WqxZqvFmq0Wa7ZarNlqsWbrPkC2moHZagZmqxmYrWZgtpqB2WpcF6ttVay2VbHaVsVqWxWrbVWstlWx2lbFalsVq21VrLZVsdpWxWpbFattVay2VbHaVsVqWxWrbVWstlWx2lbFalsVq21VrLZVsdpWxWpbFattVay2VbHaVsVqWxWrbVWstlWx2lbFalsVq21VrLZVsdpWxWpbFattVay2VbHaVsVqWxWrbVWstlWx2lbFalsVq21VrLZVsdpWxWpbFattVay2VbHaVsVqWxWrbVWstlWx2lbFalsVq21VrLZVsdpWxWpbVattVa22VbXaVtVqW1WrbVWttlW12lbValtVq21VrbZVtdpW7IunO7Zjps+RO+uLzvqit74YrC9G64vJ+qJYX8zWF4v1RaPmpK6zvuisL3rri8H6olFzTqlrDS9664vB+qK5jsn6olhfzNYXi/VFY+/IvrO+aNUcbx1XT3NH6YxzB/+is77orS8G64vR+mKyvijWF7P1xWJ90ag557mDf9FZX/TWF4P1RaPmnOcO/kVvfTFYXzTXMVlfFOuL2fpisb5o7B3nuYN/0ao53jqunucOZ507nHXucNa5w1nnDmedO5x17nDWucNZ5w5nnTucde5w1rnDWecOZ507nHXucNa5w1nnDmedO5x17nDWucNZ5w5nnTucde5w1rnDWecOZ507nHXucNa5w7pnxR55X+YOb507vHXu8Na5w1vnDm+dO7x17vDWucNb5w5vnTu8de7w1rnDW+cOb507vHXu8Na5w1vnDm+dO7x17vDWucNb5w5vnTu8de7w1rnDW+cOb507vHXu8Na5I1jnjmCdO4J17gjWuSNY545gnTuCde4I1rkjWOeOYJ07gnXuCNa5I1jnjmCdO4J17gjWuSNY545gnTuCde4I1rkjWOeOYJ07gnXuCNa5I1jnjmCdO4J17gjWuSNa545onTuide6I1rkjWueOaJ07onXuiNa5I1rnjmidO6J17ojWuSNa545onTuide6I1rkjWueOaJ07onXuiNa5I1rnjmidO6J17ojWuSNa545onTuide4werAna8x1ssZcJ2vMdbLGXCdrzHXKZqkmq1STVarJKtVklWqySjVZpSpWqYpVqmKVqlilKlapilWq2SrVbJVqtko1W6WarVLNVqkWq1SLVarFKtVilWqxSrVYpVqtUq1WqVarVKtVqtUqVWNcQLLGXCdrzHWyxlwna8x1ssZcJ2vMdbLGXCdrzHWyxlwna8x1ssZcJ2vMdbLGXCdrzHWyxlwna8x1ssZcJ2vMdbLGXCdrzHWyxlwna8x1ssZcJ2vMdbLGXCdrzHWyxlwna8x1ssZcJ7PFao25TtaY62SNuU7WmOtkjblO1pjrZI25TtaY62SNuU7WmOtkjblO1pjrZI25TtaY62SNuU7WmOtkjblO1pjrZI25TtaY62SNuU7WmOtkjblO1pjrZI25TtaY62SNuU7WmOtkjblO1pjrZI25TtaY62SNuU7WmOtkjblO1pjrZI25TtaY62SNuU7WmOtkjbk2/OJJqlbbqlptq2q1rarVtqpW26pabatqta2q1baqVtuqWm2rarWtqtW2qlbbqlptq2q1rarVtqpW26pabatqta2q1baqVtuqWm2rarWtqtW2qlbbqlptq2q1rarVtqpW26pabatqta2q1baqVtuqWm2rarWtqtW2qlbbqlptq2q1rarVtqpW26pabatqta2q1baqVtuqWm2rarWtll/86fpqs18/9J+9v39ZP+02j/ur66vP693ziEria6w1RZ+DL+6XX/4fu27wOQ==
Kalanndok
Long Handed Inserter
Long Handed Inserter
Posts: 90
Joined: Sat Dec 12, 2015 9:07 am
Contact:

Re: Not closest train arrives at the station

Post by Kalanndok »

Don't see a problem here.
If you don't specify priorities then some random train will be called.

Solution:
Just set the priority of the train stop that shall release the train earlier to a higher value.
mmmPI
Smart Inserter
Smart Inserter
Posts: 3619
Joined: Mon Jun 20, 2016 6:10 pm
Contact:

Re: Not closest train arrives at the station

Post by mmmPI »

Because what takes a lot of time to compute is the path for one train, if the game was to try and search which train is the closest, it would need to calculate a path for EVERY trains first, to determine which is the closet everytime one train moves. It would be horrible for perfomance.
ResidentDeath
Manual Inserter
Manual Inserter
Posts: 3
Joined: Thu Oct 31, 2024 1:51 pm
Contact:

Re: Not closest train arrives at the station

Post by ResidentDeath »

mmmPI wrote: Thu Oct 31, 2024 3:00 pm Because what takes a lot of time to compute is the path for one train, if the game was to try and search which train is the closest, it would need to calculate a path for EVERY trains first, to determine which is the closet everytime one train moves. It would be horrible for perfomance.
Thx for answering.
Can you explain how trains are chosen?
It is the random train, train with lowest id or something else? Can i read about this. I found only about how trains find path to closest station.
mmmPI
Smart Inserter
Smart Inserter
Posts: 3619
Joined: Mon Jun 20, 2016 6:10 pm
Contact:

Re: Not closest train arrives at the station

Post by mmmPI »

ResidentDeath wrote: Fri Nov 01, 2024 10:31 am train with lowest id
This is correct, i don't know where you could read about this, you can find from testing :)
Post Reply

Return to “Assigned”