I spend a few hours to make a total ingredient calculator. Happy to share the result:
- 07-17-2025, 20-03-18.png (533.94 KiB) Viewed 92 times
0eNrtPe1u40hyr0IYCC65UA7J5ucis8Ag6wP2R3KHncUlwO7AoKSWzRuK1JLUzHoO8wB5i/zJi+VJUh/ND9mUbZKyRMvEYtalZrPYXV1dXV1VXf33i3m8lZssSorreZp+uvju73VJfvHdL42f+Gwp80UWbYooTS6+u5jfaVEiV6toEUl4rl9EizTht/LoJgljfCUJ1xLqhllU3K5lES1mi3Q9j5KwSLOLb/BOspS/X3xnfvuoXwCWqIgko6Afd9fJdj2XGVTQS1T4kSJMiiYi/WKT5hG36+8XgG8WBP6lo1/cwZu+G1w68Cl4scjS+Houb8PPEbwFVXO5wLfyXRg+X7ZLv1hFcSGz+6WqMb9twxiaOVuny20sZwJaoorgYZJma6ACfnm9CTNq6XcX76hgixSlXt9k6XYD5Tfyy83Ft4/fvn3TH/Teqj6YA8Z4JmNoawbE3KSxbOm9aRhm1X3Pgu63IBUV0qVcREuZPUnRJkL9YhllTDEos9rJqxBfw7NlVBG6+QuIuoqyvLiuWaa422CjPkdZsSXylV2nGjMZLm4vvt0j6vcXSMp0W2y2xX0WfBa+PYS3O7Odu0v3HTL5L8OERRYm+SbNitlcxkU3FrSw0wpjzWVbKMiQMZPlQJw1k63CvJgdDnE9MvL3TSbz/IC4nZq022yeHhCz+8RE7onWq9Buoo2cFemMW9sfo19hzMIo7o8naE6gRSaLjr00jQYy06iw3YZfw2w5OwTSeiJlcgUr2mGwWg+wHrDJ9awKsyLCFRgE2d12HX5KZ3nadbx2cdttuP8m4/gu2RaDsTvNaRuD9PwM631v7jLr+RRlaTLLQcH4NACd1+DWzQZXxHA+ZF6a9TTagpCOtuvZaivj2QLIOYSK9azKt9BMXFC3C16R+sr+emqtI0AQZnezHBW7hZxtwiFEtRqq261cRwtgpwNhrufYJkuRAhHyQG/coom7nmLbIiId70CI6/mVAyY5AK3TROs0aQGa9i0yW3/cO/xmuY31BdgtSm5mtL7ks3V4E34F8dZ1FBuK73obF9EmlteLLFwVpAKDYhWHd6A47u44/g0r5FpxGxYaLPnwHuxAtPJ9TTFBftGiyDn641uRNlXOrlU58SxFrkZ9T+PtqeKCMghorkvV8+I7mKQpzPdQ0eOfL0qdtyvuvST+QUKpZmokSFvo6PagozPR8QEd65UmJx0wfXL3ZXWlYrOH0O/Fp1kefZUX+1r8J9piaFQTVz0tKuQ611YgTbQw0cJsHsFGI7vTuAtautKYFPllWwf9rrtL0bV/R9tc/t9//8+FvoPpOpHFlzT7RF/M5PLiuyLbShRpUkKDV0AUWWGR1+qjISjkSKljtYmaUTUKW7inTcO2zlD6DGo8ItbfV6ylGEpLk1+Q+94BstkXYISPvyaKPZeoTNP4VpXoM2W1P1M/4FlcY0MWvocPilMNt43Ate2I/hrGW5m3PVumyR8KbR0W0B5d41+JlEutSLW51MzW6RB0nQ7Gq54OLazXg/N/evDtdxdH4uC2Duzn4B9XoJTIDGRmruWgfYFawlyoPeAeaK72i2rOjFvxruzuR+DHAnHw17VNmKO2U6Kr+biBr43ZGvvk56/S5jmv0m1EMjtOSd8fw5T8uUGqZ7901TqRdrC81By+2iM/DjmLlZzY3F3T/uIaJ8o1zZly9Wm37jaMNM9kgWC0Uvnd4dQB/SzUpp9ekkQn1pia602SVqtNixrz/j9++DXZXZv+MU5BrC61OSj6/6SlpcKkPVC56N3nrlWZLELYjH/eVZsqbMutRP0IFzP8PH5bwwetytKOffOZ65fvTrvMh4S0uwo473WvcUdZ0sLkrriNkpsWL+RhpQXQAZvXjW5PrYN7WKmI1rC9gil6E32WWgjzOc1uwiTKiX014OMoXeKm38m1cIVbsQVb44AVpIabsvxWLtuns9PV2OHbQ4wdbGRUxsZODNSqJLhd55AzJiWh6zTa417vtXI+MRtb17zBXvx9tuNtluFmn+u3L5Yf+BmZvHCl2mQShmibk3xtM0r8GxEpymGCfK8tZQHjnGtZGOUgHTS5vJE7Vf61qgKdjesqymaxZ6X9y0ctWlFN9fq+WeZ15VNrDHz6gZmtXDPFIXS2/lz0WWa1bH+uktY2GF3Nn74Y4WCYDwZjBJTtaknzzRFS1joPNm94jcM8l+s5SrXZGmRxlHA03EM7U0PDtB+JyyuuYZgi7AY3J5PhEnQZaNUSww3zhvp2v1FdDTtNB5VzHgt27713DwX6xHvhs1/YG2EOz/UV2l0ZesdXSB8h+yAC1+vw93JMKB6gucNtnX+ic3vFSdvbdZPcdMU6p90k71+r/++//7ePBHipNaWbP+Xn2yjXZBytcRAk+0CoKzxhq3nMI477052o8odD7HQdYnM0Q9zLDjLuzdrPz2aRg1s/2pjD7SyvjBeVV53sQ20d8gZ4tt6QAnTqafDTAHPd+Ws9fmejYTBkVh7WaGgFAwzvJ5yCO4t4RxNg29Q4F7ddgy57VhFhdB1xd4RapHOcwJ5HPSgH8hi/QuVkj6z/sAhjUILz37bQRw0DiFbRPE3CxSLS4uiTvNQi+HeXbjF4Myu0L1FxC+Jd6ij1E3oQLpeade+3XTpk8+0aHTtfbkHXBkbXvoS5NperNAMMUQJVQBlfhDlGhOaauNR+LrHcyELzdM3TNjGsKv4706HW5akGLxe3l9oVLM34LQ7Ykxghnj/irhSdQ3LsMcyhJ62mp4qW+/6oO8APPfVvYQ1wsI1Jco7GovvYIDzT3qYfIfxKiAEeqzOb7sc15e9ZaP7zNorlPsX9w0eM9iGEHJiqQn1oe3FvK6HjGoBLi4ouWqVxnH5pxLJe/po842MqtKiBCAo3WfoZxnSpze/4CUY3New/rbsJYQ/wx52c1d4Md+2JJbvPXtreaLJnsRXz8CG4yhngixyNALPPwxcp+hxNaxi+vLcSNLikoMEwy8I72DkUOIM+5bSR0ObhUoV1rcMkv4022hynB86QpLjUfoRtANqcinRTHa6h0NK5XIRb2CDQYLJ5KdQS+aU0T8HH8KD3pVaPtnYLuwyYwytYGFrnltdjOL03O5yw4dLyuwS2W0ou1pQqS7Lo5rZoJbXfg9TuSEjd+b3mcPxD7+E4lm15r/03jBfbuHKOUf6hdGcXT1N1TqeiocfxnbaMdlY4mufl4eno0z7XmQgGRFN4Z3GQ81AHIs7n/MFfMNqHNLNyGaAz+UsYXHUwP2+ezKeaxG+8zD9Ms9TVeNqMcPBGpZ4f2YHeRkyzhzi33uDK+dTpCdsacIbdG6t9AgNDRsCkYkBExuloe3WY05fjj6e/etvB9LY94Ly+9+rtRefl0Wu2baDi84KnpGxnwGHkVy8R3x0tXPlwR9hPdrT5apzpYPo6AO0eljvfnxTWh4T0BkQdedNRxeV4/ORvVvHyB4RRnY6FfzqkJeDDxZOx8cQ55KCCv3nTrL5OP9c2vijJZQb1Ln9NfiQ3V0ZZG0B/MXA49uZ2+N5o+sTaByroIbTtSWg/zExpDAh/8c7rQOMZBj3tEGmPAuSYAwJhvOlM6xQI8+yQBccaEAjjTYEwUyBMK1eJAYEwoxFgznkEwjj2sECY4C1kf3ScYeElIyGSuUukPx5efX2/XKLkkbx7BFlDUSZZmkRfJYeVyN9AOMF+TgvXqALx8QNa4CiBNHmG8eDCIpZh0ohDwKMCOE2w7pqy0cGS2BBmrYLGHRaqErzaUJXZi4WqHMqwuo+DFruhKuVxkDBWDIK5kzl7Mp4nCRuxLEYrC3gDAlKCt2LkGkdyj0eUoD+jKFCoFSOQ4KjGn+QG5bcs9jCCPyBoJDiPoJGrAbZENe9w4oW4K6EYQj4PNs+LLOTECon8nQxGUWvooBMMuccgOPEpXbdPnmxxqtXk6jkaQJ9l4uqR5Z8O/0WVkC4DfaOV9qNGpsRb1AyUU9TRNTIc5kUUg3RPFvG2XOjvIhmDIuGSGpFTEU5sfB0+CDRcas5l64ZDk0m+zaRSJL7g2UPK7o86SZ0PirYzGIusK8GB0Wgyp2hl4O7Wq0zMIXkfTs671oAAmmkZPNIyOPl6HvH1uGJAnpJgskVNtqhWrrIHxNEEI/Igfn/8SAzXGeB9Dc4rh+yZ+6LEPhZwB8SQjEko972maHJAvagDyvUG5PgIphilI8YoDUzieP76a49zk75zzo6WvpeKBgPiH4Ipdf20/Dx7+fGMAfEP055z2nO2c5U5IP5hNALMPY/4B88aFP/gm28h/sETg+IfxkKkA8Q/vN9Hoc5HAN2u5JlusD6TfAjkkNpUSRF2nKiwlLBHu3Xh6BOG5JzjNBwahtS4GqaOQLofm9Q6BG7/MIITzvMx3Q0wJQU+flLgH5TX/OcykdZcajOzctBXV76Gmlxvijvtq8zSvRtwz+uf6eJVzoETnT1+Qcv+gFwcnt//ApwTjv60Jx73njjon0JjBPrzm7mGbQpRecTE7xv9o6xGJRonb+gozdG+2T8E6vT8ddiDU2cecOHs0b58q3+80nhYwJ5Y4GkWsPexQA9jrO+es8W6pyPZ73H00fcmQj4kpNM/SudclPdXk0moIYOnkJ0n9Hm3f7KVia9PxNfWxNdP8rXXP4Lq3JTIacv6sltWv38E1WQtnqzFe7gq6B9BNR4B5k4CbPwCLDCGxYeJtxAfFnQ1TDaDw8Tri346jDWq57UvLx6+sDfMqZsa/T6bR0UWZnfVtS8tavGfohgzky4lZjunFBKt6rbSeylyqsSG4uMePkwSsMGspUnRjuev5cr24NkyTf5QaOuwgOboGv/CNAYqWMJsFw7WoARDpxUOgxIM/cv478JqGy8xLIDudYzX+/uD9cdXe3HZv6sLx2Q+LGwvsAeE7Y1sgfr+4uXyLEVJjsm3+BpAtGmgJC21fb7eXVbppEl/W9wtyD5RP1iqBE27Odow3HU9j2XrtXGBMyCiTLyJG7266eMjSfsduIMuFztD5bmnhyXoc7+pMRHyISH73F5qToR8SMhg0DUsEyFLQpqGMSCkQ5yXMevMQzrcPSEdpmH2T6UzAv30bXoaxeRpfMrTaBrWsBibaZmoKCkGBNlMIuI0IsKdRMTTIsIeEGUzMfZpGNuZGPtpxnYGhNmI6Z6TyUv9bC+1abgD4mzEFGczxdm0s5U3INBmYquJrS7JIYLfQBL+Yuqm7urmRx0gS3d0CyALIKHbAAmALJNAGyoKn2ra+Dygqg5W8BQoEMQKgBBfY9BGECvAM900qNSDUp8KfS4UBAIC/gIg102LKhDITSDQVaAocRFoEQYTe2Pa3B3sD8BYGx6bVR3BWKwK9rmOQDyKFNhZgAXDUMfhOnYDp4N1fK6DXXODEoYPMSEJNoMSFlguStis6ttYbpcwlBOMlBGC6wCtdNsvy2ucfgOP33g3gHcdk8otA2GnhC09EDzIJpLbov7iEOsOvwtF0EGD69D4c38BBoDHxEL6WAon0sTiUbGQJhbThGCbh8giNnHKOjbWJzwu16c6SBO7AQujhl0eUwv7aDM3WdjHsg7CFtPBQi4RFn8LeUNwHwX2Hf5nM2xjOeIRyDOCeYNgh3EKs6Y5wY5R1oc2MP1heGDcmU8IdpjpBdJN2GUdgTDVoUlUwZbueozfRvpzmwXSzfe4DtLN4fFC1kFYldsIU30Xv8WTSeBsc9R3kfcchR/5ylPlyFcO8znBgVXCFo6XzbDAGS5K2OF5LQIeU8GwjeWIE4cZecMsYccvYYHlgmHiH5IlRFvul418CDDVx3lqM//YSDebxx3/ICwYBropPEg3l8fFRro53GYb6eYquYW0spnf8I9ueyUsECb8SB+baWg35hoOM46RxbBAGOsji+iuU8IWwhbD0B7G45gsE0yGLRxfVS4QxnY62N8atnSf5xGygu7xWDiCJCRPNuQF3eMJgLyAsCq3EaYXkCie+hgSImBiOUgITzXUrZnDQUJ4TGgHJ5in5DkOts+DjbJB91kQuEZdxzXrCeBiZwJmLBc7E3BncKxwAldwwG3gcmYClyYSMzcWIU5VLvRALSoIl9+iScIMh7RH2GKY2kkwCpeAmQnHBIlrMSwQpncDnmwKtpDoFsMCYXzXw8GuYfiowYTGAdJ95hQPCeEz93nUSUbkYcc8HjyPOsOc7tlcx65g7oDnMtFNhq2S0AwzQT0aMG60RzObOc7D2exxh7FI91iiE+wbZR1RDirBasA8JIQitIeECJg5sCk4YIJhgQTFOr5ZDwDB6DRTP6rRIBgfqB/AY4Z6QiRiIeoLVcuuf4jyiaAfhNhWpLf4h6Af6gliVg1Gzgh4IHzifvUVhweLYE9NKZN/WI0HAmF6GalZw/gFJr8fNN8mncTgQfJZK2HZHZi1bA1MnoYWw3Y5JQOctgGza4BdChhr4NRUJ5LpaJOz1C9Bv0hPMYTqOj+zVTP5l0Pv1b8E/WKcLvWh/lUTEP+aqhegKKK+CirvHBTYTRbRBUhxOJcxhSaVsV/X5R2BtAUBVTsnRdlxrcAOAscTjrA9C9TpKFlK2JUYuLOpUYIWHi3KjUWt0j/qpaiRmZ1ydq2jRG0C1OsWqsO0y4okt+D+lqtCUZpgnh+p5vqXzrf2XVbOu7B8F4bPl93C7RGG4t4vVY1ZxXfQkVmWztNitsqwUL/4DboMbcfb4dJsTd1/sOnie6y+s6jjN1m63cCDG/kFiNLuC+0TUmvsEqCx6bTfrMNIDLv71Jgcb0zHzpGjVklC8z4zmtaU2fWsM7ue4MgDFKdHPfPgdL8HsfOEaE55EASLT7M8+iov9pFdUZRqhvO4vEuaLPdhooXVqHAf8LJgRdH2mzo6Z1l63TP+pQKx3l2M8lzSj6s632merpXHpjaXNiYIXjy6N/6ZoqRr4yv5jCoHUGOqNvC1Zj7sHPk1Cm47YDbVo+QLvtozNQ7JoD/1vEivcUY+ypFnZ5swkfFTNwIZNP6F/L0gYZwsmf/Wcp2CrENGwDUB72n+nS/SvdT+i5h+u7hVF9/y+ZlFtJF4nXpOpzlA/qsrcxeyNfK3cxzSK2fY0+ezPnBy6qOlna7uer6JPkstBFZLs5swiXJa3DVY5aN0icuxk2vhis6qZPA314AVpIb6UX67N7qic3DFqFbpNxI29OSJs/MPAzJ7RMB2V5nfQgis1f+OFbIHTjmijxP9cJjN9PlLBjHA1OlZ5ygZ2qhk996OW6Pbjr87nKlLPwuT4E8vSaITC7CmoSFJKzNDixh7/x8//JrsGiX+EQO0MK4qXHz6pzLg6mFIl3r3uUaK+xFi97DtjQ9rFV+dw5urxVg8003zYvvAnfDmY1jHpuuKuuwbPyzCGPgz/20LfdTQCreK5mkSLhaRFkef5KUWwb+7dIs236zgXCBpwtGJCT0Il0vNuvfbLpk7365x1/nlNiwwVFP7EubaXK7SDDBQkgvMnhDmaEjONXGp/VxiuYHZ5Omap21iUDL8d6ZDrctTNLMUt5faFYgO/BYb9iV6SPPHVNruYdvjnEOjCbbteO9Rm0TXj2DyM73n2/y8+ry3GvXK5heTckpWvOjmtqhsfzKOW9nN7+y8qaMLPOdZW6gd3w19hEy8CFyvw99LklOEQVOJbKVS0P+uqWc29wjTw3ygcv3vUY+oPxGN3s17QpllZBytcRBUWibqCm+5qp0YjzgKwZ0wmofhHkZnlhSnZEnL7O7/fNH2djL8tnXI6n9p0ann2EhutDzkZD2hMtbGHKIrtzeSk/Tgdo4WU1Fjnca1tfV2B8danZvGs5uLrHKPld1vlWGdd0Le7qdOo8Ud3TB56rn103R53X5rpOX23s6flInvaf+DEwGdiw2rQZd9wr3DHqRxXPi+eEQL0yLKFtuo4KCCkA9D8xPYZsPv5sYkpy2zSk5IxxSViF3chsmNpN02sCr6gtBwJuWSI9IIbY11ByNs2umKb9jSR/B/uskY84ICS64phWWqLjaGablGTL8mrXOg8/6ocd7Vs78dfYHruj/y/Kebe4ScAuap02a2xUt3DSjwvFHQ0nqFJ53byN81A5pnj4L84kzIb3U8d2IaRmNJcC+fp+sPPYZSZGGSb9KsmM1lXHQ8goLdLo/hVBi3UJDhuZRkORBnvVVahXkxOxziehcjf8dI7/yAuOudS7HN5ukBMdfqZA4vAavieppFi9kmjWV/tLXOsgGdYVakM25tf4z1mg+ad9wfT9CcQYsMdO1uuEyjgawR3nYbfg2z5ewQSOuJlOHpA3kYrNYDrAdscjNGoohW0SICsXe3XYef0lmedh2vXdx2G+6/gUJ5l2yLwdid5rSNQXx+lnl/7mp4iqIsTWY5uZT6o/Ma3LrZ4GqLJycGIKyn0RaEdLRdz1ZbGc/IFTGAivWsyrfQTFy7twtekvrK/npqrSNAEGZ3s3wRyWQhYf8zhKgN2/AC9hnRAjfjh8Fcz7FNliIFIuSB3rhFE3c9xbYFEuTuUIjr+ZUDJjkArdNE6zRpsZag/gCz9ce9w28NK8gmAnbjQ6+wvuSzdXgTfgXx1nUUG+de13ydhbymMOeLx8xNHAdN+2lY8uE93OOW72uKCfLWg5+i/10XnjeWtHNtTrMje8DaaNv5NKgzItoeZcfdgZjOoEsNnknPt3DU232+Ia/pvfOahrziVuZ0GIjoD+TPy2gZDi2AWjJZcmxYtJJ4tAPNcI0TRCTx6HRRfbhImcvVzTFs1SuNhXTKCE11MIB43CPNMIaHzyC1drPzUTl/rJNvCjprtm1gnOULnjISfv+7GU7IcleHOZw5/uNFV2/7bJHocwmLuyv+p2QpmOTD6HcE122uoOqeLeSiOtFACK27y+VSLZJ5u+PJNnsfqvVO6Hz96ZB65YeLV3CjmW11YBRjH6Pchgm8UylYizTD0XsqetPufAOEMQYmedL3N10U9FgIlm13l/GeP8n4h4TsGqXluWOYPm/xnonpaonH9T67w4bf26eu5Em4yW9TaOIHXIhoM7RIowRZOFlIPlTTuHG3tSFdt+SeONslabri4kWvuLA7ZMnxrD0839CwkOdz+NjOrdJ7tPOgexR0+fngmWz+ckFijtE7w5R/wjl6dbgEU8dJl3C4nFQnO419Nc7sjH1VZ6f/rtqfNL4j3yw2ReW3Ztu0eqe58sejYFnTnv/py4GtfVKsv9knGA8LiIkFnmYBsY8FBtmAgskGVBHSGULIKbt8TUi3tzEtmFSr6cLy0epbXm++nrYMp+Jra+LrJ/na722oHcE+YrrIc5z3wzqdz582XOL+6Q7t2edxaM81OmuzeGyvvJ/31LmFO7/X1Hn/obfOe6zFbe9ao24vU8mT1ulyG6c76egWwKR4AQvMSehxfKcto525SeGL5WGA6NO+1Equ+WyPyc5pTn/nYgGZ5NtMqqMIi8ePJfC9K5izr2p6uOCgnSXG97a2sqOFC5rauGPaPHla50PY7w+VzPV8cqf+JcxzXvrKu4+I55YwuIrx8ibnUU1iTpaqD7mscY4QMK/nqGHN1tDYKJEz0Rop79+fEe0nmotrDu0ru5jJcHnd9JvXtqv7jep8mqQ5Sc/jNMnVAOu/yg1SJwfBIwSc33OeF1nI+ecSkGNYJSpaGaPPIRSz6zAcagW9ajUHmbtL46zH0nj1iC2I0qHWqVjmchFuMTfqSvtRo7hKoHgVg+/oGkVR5kUU47mPRbzFlzDly10k42WuuXwZDRUlaaEOhuRAw6XmXLYqn9rOIvQFs7GqK2qa3ntSbTGJsrrcJkJ5IXPc1hVhe0il63b27Lu7i89xfflu5yMw9hjWyjYj/NG9wW7nsxzmrvgfhR/FnvwoT/tR7H0sEPR1pT3cLJ2OBZyJBZ5mAWcPC3jGAA/Qs7ngDXiAPHMIIY2JkBUhrb4uh5MKpbftcnAml8NTLgdP9OZrY+LrE/G1PfH1k3xt93WljUGJnFxp43SleU5vrjLOLdBzOknzoidpvC6nx4yG/ajlJA2eoAlvOHkL5nkuIsrpvFKeotbPd7Vhuc8wub2abffJncaeP8TfJs7jGtXvX8klqo/Ipz+TAZxRK8crndgMS48y28BzsrEbrRMx6JA2qj5F6ltNOUApnfJS26s8MWShQc0LRIHKfFGnwogKytaeP0geFf0N3qAL1ZRYUXmjIsz6sJbLKCxk9QwP8V0iLqB6qq3DT3hj3DaTfH0b+Qduw81GJmXWH5JP1RdV+p85jFV57X1xm6Xbm9s2WvlG56R61ZQ59UVtI7klZ7pI8fgXKf6g/Go/A7NTupG51GZm5cKrrhwN1fUIX2WW7jVU+WbvOWC9yjlwooOkL2gfH5Ct0e98T5g1Bgk4bXtHve31RW+uskbFVT0PSk973Zfd6/p2nxyzXQXXG/BS+c4QQloTIStCdr5nzR/DOvrGtt9TUoJHPCC+1zuSyhqPrdqdwmieDqNx9+0G/F73l/s795fvmHWeSH7pB0PCTab1pyJkYPR2y1uTW/5Ebnl3css/tSgFZm8Hqji3NCnTpvJFN5WB1efcZcODYr+Vm0v4wo8wy8I7ctXEafop1+Lok9Tm4VI5iddhkt9GG22+pTMbUZ4Ul9qPfAoyL9JNdQSMrNWl7Zp4lSVTqCXySynZ4GN409plMzu4Mn6vgG1ax1P0GU/7zY4nOvv5uuUqgXl1Uqd5Z0wrre1eZ5ZHQutBR5ZnL3Zk+VC75X3Dvtg9shwumaB4sQ85nutLum9kUXug01W74zlweu8fncmVMLkS9qzKbm+usidXwqT1PclfvXOdj4y/Jqk1JqnV9VSqG0xr4cRVT3FV0Jur7HM76Dotiy+6LMLubKA1xD273XMrmczOcdeiK43GnufoUPcU9G7Ta0l/RNHLmyoH0k5OG5ifvL9un429bJPm6GbjvZw2fzy8Lev9cplTBhmyIeJtMGjSytIk+iqVOK1yOHFoPQeP/waiGQchXFNql9ZBED2CZfxpDB6OwX1y1wPBlic65IAJ5xaxDJNGqjw8RUBHI6DuWiM9DG+1rjSz9nHrfr17NWQj8I0eKsPOk2dPoiRHcyCbe9FLiJ7FkrLloY3ysk7SYvCEBVri6wdLNYK7Q6OSs8msfXyczgnTxjA+B02YdlC1dCS3qppGvxvsffcNHkUyDa/vhV4PZ8G+lK+jD+HorYFOQYTjiNcwDb/H5eV2Z05+AyFdphH0Nk17kxFxMiLuseyYRm+2cs8tY+JkRXxZK6LZOXzPGJEIO2xM+cRrL8xr1oAMJO63ibuGZSAxTfH83Z7bCLPzmru9n9MCdF+1Z4WtXZSQ6WdbBSVVpiNAG8ZfYGt4nd+mX0qzb0uz7IGODP9NODJMZ6CF2T8b6+b7vTRye69m03VLk0K+d+HyhkmowHgbEsrvQyZrJGQaFGP8L+O/Fql1xIIBzvHAeH3O8cMcJe15CdCLJ0La6wXvdmbtfTaPiizENIPqBEiLTfNPUYwW9aVcRQkNZLutVBktyRZfYsPdyj18mCxtg46NpGjH89dykXjwbJkmfyi0dVhAc3SNf2FgvEq7ZLaLdMsYpk29Eln1/r6g+uOrvb/t39W9azIfGCVgdTV5uPdk3uv3LyMKnDyI4BdTN3Whmx91gCz8DyD66yhQIIjPoZYOm3gGbQSxgo2lQhcEWrqj2wTBW4zV4ecIuvActnuWAj2qSoWGAkVdVWBVxOoBgoAKPagaUM0AkRr0OGgUQot8AuEZVDCpAsAWwvhZk/rI1U3sGigt1HXqBX/PxBZDl2vY5ToO4uH+4R8dthuE0+U6gmEgjSKnC3UsVQeapQvuuomNtyyuT202GWeA9Q2muoH1BcM4QoqYFrXfovrwh8pFCQN+k+G6Dg6UUCPpYNtMroOw6zHcaD+Qz0T6EIzttL0ShgartiFsc5uxKparOjbCWC6Q/h7TEF/TBdMfqyKsym2EqT72MVDl2Ecn4PrIm05QltsIU33sr2swL2J/XWZGIWo6EGwrnAK/a5cwjQXhwXF3VX1kWtcqYRvxE04cd+GXsECY6iBjAiwq2CthS/ddxu8hHqa/QLo5ij4Em2W5QBhx2mZNW4KdCraRr2jCYb8cbicWIazKoQ7zGP7RbaeEBcJUH/nW4b7YHo+RWcIB84CN7a/rCISpHPnBFyUssC80wXF8Xe4vNkt31MTHcXG4zQDDd7k9+Fh3mYb4GGFVDnW4/Q6JEreEBcJUH8fC8bgcx8JhHnZwrgWqHGnuKTzIz6r9js/l1E4SIEqCIK/pnnoZO+Z5ZbmNMIkmZOiAGcVl4eKXP0D+8Ai4BnOQKGFP1cHee9xLl6SowWR0sfummvMu8pzPPOE6Dditx8bFvineQhLqLktGJCHCFsPwNfUujRnTCB8jrMqhDn8X/+ieVcICYZK2yH8ej5+H89DjcfWwNwH3xqOFwOAPeziZPCW0cQA9pywXpTBA+uNAYQeQ93DSE1JiQJ7oOBS6qZYXHAv6oZ7Y9INex34GPM4Mc1t9g/nUZNgq6cgwzz8f++nzp32cWz5/zUf+9fljWIR4rBLGEBCbf4hyIjDMfOHz0HJH8bnu8+zC5zhqCqYRJKzIwYEqd4mSTDH6ESiYhpwp7NNiZ5SwQBhfDgyiC2NFihJvm/zDKicGyleEadW06HOMKuBRZDIFOFr4g16nIeIeYXuwtRbDWMkvK4mSQQMaR6+EmTlocUZuDXgmIvPgYFsMi3LgA3/3Be4T/QiafeIf3ELsA9ZTa6th0i9/55endAIeRFH9QsZyFBaaiWapPdhqXpa/BA0N13Qao4wsYVaEwF8W/eL3WEsJVM2AvmColgX0dRZAJqkl5fjhL2Z5s/FL6RemrXrENWkYLEPVdIkuZU1iKKvUe3x6FqiaPn0vqJ7Z9Mv+CIohbrBAaZzDhmuTRXSLYhzOZUwBiKXSfV2eTU6z6zidp0W6jr6Szf+zzHLSnh3XCuwgcDzhCNuzQJGNkqUEjdr81vKV2TxNPz31KXi+uymY38FGQK5W0QJrwuNoUSrbtVr86D7vXrPw8tLP8loVGY9059v/Az+h9I4=
You can just use the constant combinator and add whatever you want and it calculates all the ingredients that are required throughout the entire crafting tree. It has a module in there that corrects for crafts that result in multiple items automatically. For example, if you were to request 8 uranium fuel cells, it will give you the ingredients for one craft, because one craft results in 10 cells. If you request 11, it gives the ingredients for 2 crafts and so forth. The book contains a lobotomized version of the machine that illustrates the logic that I use.
It should work, checked it against some published websites (https://kirkmcdonald.github.io/calc.htm ... ircuit:f:1).
Planning to use this now to make a programmable make me anything machine...
Enjoy!
inefficient